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Abstract

The concern of this paper is the approximation of point sets by means of B-spline
curves and the utilization of this method for outlines of ostracode valves.

B-spline curves are parametric curves defined piecewise by polynomials and de-
termined by their so-called control points. Besides the enormous reduction of
data with minimal error occurrence resulting from a numerically stable approxi-
mation, B-spline curves offer several advantages, such as invariance under affine
transformations. We will describe an algorithm fitting a B-spline curve to the
contour data of an ostracode’s valve.

A further focus of this paper elaborates on the problem of missing distinguishing
features for B-spline curves. We will therefore investigate several geometric
measures on the usability for distinguishing superimposed B-spline curves.

The area deviation provides a good and a natural measure for distinguishing
the approximating B-spline curves of ostracode outlines. It is defined to be the
part of the plane contained in exactly one of the two outlines. We describe an
algorithm using the morphological structure of ostracodes to reduce the time
complexity.
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Chapter 1

Preface

Ostracodes are small crustaceans whose natural habitats reach from the abyssal
depths of the oceans to freshwater lakes and ponds. The good fossilization of the
shells allows the ostracodes to be used as an animal indicator for biostratigraphi-
cal analysis. They are excellently suited for the investigation of palaeontological
questions such as the tracing of climatic changes. [1] [11] [14]
An important field of investigation in Central Europe is the examination of non-
marine ostracodes, both living and fossils. Many of this crustaceans, for instance
those belonging to the family Candonidae, which appear most frequently in
lakes and other inland habitats, lack considerable structures and ornaments on
the shell’s surface. The title page shows, as an illustration, two left valves of
the species Fabaeformiscandona caudata (1) and Fabaeformiscandona lozeki (2)
sampled in lake Mondsee. [22]
Thus, a clear identification is not an easy task to perform. An assignment of
these fossils to a certain species can successfully be done on the basis of the
valves’s outline.

For this task the so-called B-spline curves are a suitable and already established
mathematical tool, whose main purpose is the construction and depiction of
arbitrary curves. In our application we use them to approximate point data,
such as pixel data of an ostracode’s outline, to an arbitrary precision.
The name B-spline was coined by Isaac Jacob Schoenberg and is used as an
abbreviation for basic spline ([8], [10]). The authoritative person for the devel-
opment of the theory of B-spline curves and surfaces was Carl de Boor due to
his researches at General Motors. In the 50s and 60s of the last century the
automobile industry in particular had to face the difficulty that freeform curves
and surfaces couldn’t be exactly reproduced owing to a lack of a proper math-
ematical description. Carl de Boor solved this problem by depicting the shape
of component parts as parametric curves, defined piecewise by polynomials. As
a result, the curve’s shape is determined by its so-called control points or de-
Boor points, which are the vertices of the control polygon. It turned out that
this way of characterizing curves and shapes was advantageous for other fields
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of industrial production, and a generalized version of B-splines, the so-called
NURBS (Non-uniform rational B-splines), was developed shortly after. Repre-
senting shapes with the help of NURBS curves and surfaces is still employed
in Computer-Aided-Design systems for industrial use. Nowadays the areas of
application are manifold and diversified and reach far beyond technical mold
design and construction. Roller coasters and rail traces as well as the visualiza-
tions in animated cartoons are contrived with B-splines and their enhancements.
[2] [10] [15]

For our task, the approximation of outline data, B-spline curves offer several
advantages. B-spline curves are invariant under affine transformations, which is
convenient for processing. Moreover, the pixel data can be approximated by a
numerical stable and accurate algorithm. In addition, we obtain an enormous
data reduction. The primary outline data, consisting of approximately 1000 to
1400 pixels, can be excellently depicted by a B-spline curve determined by just
16 control points. A further important fact to mention is a property called “local
control”. Thereby the shifting of a single control point of the B-spline curve does
not cause the change of the entire curve progression but just a deviation in the
surrounding of the concerning control point. This characteristic has proved very
useful for the examination of morphological structures just having an effect on
single parts of the outline.
The theoretical background of approximating B-spline curves as well as a brief
overview of NURBS curves and B-spline surfaces is given in chapter 2. The
absence of distinguishing features of B-spline curves is also dealt with in this
chapter. Contrary to references found in mathematical literature, a proper dis-
tinction only on the basis of control points doesn’t yield a reasonable distinction
measure. More elaborated suggestions will be discussed in this chapter as well.

Chapter 3 gives a detailed description of the algorithm for the approximation
of ostracode’s outlines. We decided to apply the area deviation to distinguish
B-spline curves. The shape of a carapace offers the possibility of a fast and
stable computation. Moreover, the area deviation provides us with demonstra-
tive results for the application in palaeontology since an perspicuous graphical
representation of the stated area is feasible and the output is in units of square
micrometer.

Chapter 4 deals with a method of distinguishing two populations of ostracodes
by using the data of a multi-dimensional-scale plot, which frequently finds ap-
plication in biological research.
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Chapter 2

B-spline Curves

2.1 Motivation

Parametric functions are a common method for representing curves in geometric
modeling. In this form of specifying functions, each of the coordinates of a point
on the curve is represented separately as an explicit continuous function of an
independent parameter

C (t) = (x (t) , y (t)) a ≤ t ≤ b.

Thus, C (t) is a vector-valued function of the variable t. The interval [a, b] is
arbitrary, but it is common to normalize the interval to [0, 1]. For example, the
first quadrant of the unit circle is defined by the parametric functions

x (t) = cos (t)

y (t) = sin (t) 0 ≤ t ≤ π

2
.

Setting u = tan
(

t
2

)
, we derive

x (u) =
1− u2

1 + u2

y (u) =
2u

1 + u2
0 ≤ u ≤ 1.

It is instructive to interpret C (t) = (x (t) , y (t)) as the path traced out by a
particle as a function of time. Thereby, t is the time variable and [a, b] is the
time interval. The first and second derivatives of C (t) describe the velocity and
acceleration of the particle.

By allowing the coordinate functions to be arbitrary, we obtain a great variety
of curves. Most of these functions are difficult to handle for a computer aided
geometric modeling system.
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One possible trade-off is using polynomials to represent curves. They are a
widely used class of functions, mathematically well understood and processed
efficiently in a computer.
A basic and simple option provides the use of a n-th-degree power basis curve
given by

C (t) = (x (t) , y (t)) =
n∑

i=0

ait
i 0 ≤ t ≤ 1,

where the ai = (xi, yi, zi) are vectors. Differentiating yields

ai =
C(i) (0)

i!
,

where C(i) (0) is the ith derivative of C (t) at t = 0. The n + 1 functions ti

are called the basis functions and the ai are the coefficients of the power basis
representation.

A superior method for geometric modeling is the use of Bézier curves. They also
use polynomials for their coordinate functions, so the power basis and Bézier
forms are mathematically equivalent. Any curve that can be represented in one
form can be represented in the other form, too. A nth-degree Bézier curve is
defined by

C (t) =
n∑

i=0

Bi,n (t)Pi 0 ≤ t ≤ 1.

Here the basis functions Bi,n (t) are the classical nth-degree Bernstein polyno-
mials given by

Bi,n (t) =
(

n

i

)
ti (1− t)n−i

.

The coefficients Pi of this form are called control points.
These points Pi convey already much more geometric information about the
shape of a curve as the coefficients ai of the power basis representation. In
addition, Bézier curves are invariant under the usual transformations such as
rotations, translations, and scalings. That is, we can apply a transformation to
the curve by applying it to the control points.
A vast number of good characteristics justifies using the Bernstein polynomials
as basis functions. E.g., they form a basis for the vector space of polynomials
of degree n; they form a partition of unity:

∑n
i=0 Bi,n (t) = 1 for all 0 ≤ t ≤ 1;

they have a recursive definition: Bi,n (t) = (1− t)Bi,n−1 (t) + tBi−1,n−1 (t),
what makes a fast computing possible. I will discuss those properties for B-
spline curves in a more detailed way in the next section. It can be shown, that
Bézier curves are just a special case of B-spline curves. [15], [23]

Despite all conveniences, Bézier curve representation has one big shortcoming
which can make the use of them inadequate: the curves consist of just one poly-
nomial. A high degree is required to satisfy a large number of constraints. E.g.,
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we need a curve of degree (n− 1) to pass a Bézier curve through n data points.
However, curves with a high degree are inefficient to process and numerically
unstable.
Another disadvantage is the lack of local control. Altering the position of a
single control point causes a change of the curve on its whole shape.

The solution to this problem is the use of piecewise polynomial basis functions.
Concretely, we want a curve representation of the form

C (t) =
n∑

i=0

fi (t)Pi

where the Pi are the control points and the fi (t) are piecewise polynomial func-
tions forming a basis of the vector space of all piecewise polynomial functions
of the intended degree. Further, the fi should have the nice properties which
are mentioned, in excerpts, above. This implies that each fi (t) is nonzero only
on a limited interval and not on the entire domain [a, b]. Since Pi is multiplied
by fi (t), moving Pi affects curve shape only on the subinterval of [a, b] where
fi (t) is nonzero. This leads us to the definition of the B-spline basis functions
described in the next section.

2.2 B-Spline Basis Functions

The depiction of the B-spline basis functions and the resulting B-spline curves,
described in chapter 2.3, follows largely the elaborations in [15] and [23] with
excerpts from [2].

Definition 2.2.1. Let U = (u0, ..., um) be a nondecreasing sequence of real
numbers, i.e., ui ≤ ui+1, i = 0, ..., m− 1. The ui are called knots, and U is the
knot vector. The ith B-spline basis function of degree p, denoted by Ni,p (t), is
defined as

Ni,0 (t) =
{

1 if ui ≤ t < ui+1

0 otherwise

Ni,p (t) =
t− ui

ui+p − ui
Ni,p−1 (t) +

ui+p+1 − t

ui+p+1 − ui+1
Ni+1,p−1 (t) (2.1)

The half-open interval [ui, ui+1) is called the ith knot span. It can have zero
length, since knots need not be distinct.

Ni,0 (t) is a step function, equal to zero everywhere except on the interval t ∈
[ui, ui+1). For p > 0 the Ni,p (t) are piecewise polynomials, defined on the entire
real line, but generally only the interval [u0, um] is of interest.
At this point it should not be forgotten that equation (2.2.1) can yield the
quotient 0

0 . We define this quotient to be zero.

I now list a number of properties and theorems of the B-spline basis functions.
Let us assume degree p and a knot vector U = (u0, ..., um).
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Property 2.2.2. Local support: Ni,p (t) = 0 if t is outside the interval
[ui, ui+p+1), because Ni,p (t) is a linear combination of Ni,0(t), ..., Ni+p,0(t) and
those zero-degree basis functions are 0 outside [ui+m, ui+m+1) , m = 0, ..., p. The
triangular scheme illustrates this fact for the function N1,2 (t).

N1,2

↙ ↘
N1,1 N2,1

↙ ↘ ↙ ↘
N1,0 N2,0 N3,0

N1,2(t) is a combination of N1,0(t), N2,0(t), and N3,0(t). Thus, N1,2(t) is nonzero
only for t ∈ [u1, u4).
Conversely, in any given knot span [uj , uj+1) at most p + 1 of the Ni,p (t) are
nonzero, namely the functions Nj−p,p, ..., Nj,p.

Lemma 2.2.3. Nonnegativity: Ni,p (t) ≥ 0 for all i, p, and t.

Proof: This is proven by induction on p. It is clearly true for p = 0. Assume
it is true for p− 1, p ≥ 0, with i and t arbitrary. By definition 2.2.1

Ni,p (t) =
t− ui

ui+p − ui
Ni,p−1 (t) +

ui+p+1 − t

ui+p+1 − ui+1
Ni+1,p−1 (t)

and by property 2.2.2, Ni,p−1 (t) = 0 if t /∈ [ui, ui+p). But t ∈ [ui, ui+p) implies
t−ui

ui+p−ui
is nonnegative. By assumption, Ni,p−1 (t) is nonnegative, and thus the

first term is nonnegative. The same is true for the second term and hence the
Ni,p (t) are nonnegative.

Lemma 2.2.4. Partition of unity: For an arbitrary knot span [ui, ui+1),∑i
j=i−p Nj,p (t) = 1 for all t ∈ [ui, ui+1).

Proof: To prove this, we consider

i∑

j=i−p

Nj,p (t) =
i∑

j=i−p

t− uj

uj+p − uj
Nj,p−1 (t) +

i∑

j=i−p

uj+p+1 − t

uj+p+1 − uj+1
Nj+1,p−1 (t)

By changing the summation variable in the second sum from j + 1 to j and
utilizing Ni−p,p−1 (t) = Ni+1,p−1 (t) = 0, we get

i∑

j=i−p

Nj,p (t) =
i∑

j=i−p+1

[
t− uj

uj+p − uj
+

uj+p − t

uj+p − uj

]
Nj,p−1 (t)

=
i∑

j=i−p+1

Nj,p−1 (t)
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Applying the same concept recursively yields

i∑

j=i−p

Nj,p (t) =
i∑

j=i−p+1

Nj,p−1 (t) =
i∑

j=i−p+2

Nj,p−2 (t)

= ... =
i∑

j=i

Nj,0 (t) = 1

Example 2.2.5. Let us compute the basis functions generated by the knot vector
U = (0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5). As evident from definition 2.2.1, 10 zeroth-, 9
first- and 8 second-degree basis functions exist. Therefore, we will restrict us to
a few essentials. The figures 2.1 and 2.2 show all basis functions of degree p = 1
resp. p = 2.
Zeroth-degree basis functions are simple step functions, as

N0,0(t) = N1,0(t) = 0 −∞ < t < ∞ N2,0(t) =
{

1
0

0 ≤ t < 1
otherwise

N3,0(t) =
{

1
0

1 ≤ t < 2
otherwise N6,0(t) = 0 −∞ < t < ∞

Examples of first-degree basis functions are

N0,1(t) =
t− 0
0− 0

N0,0(t) +
0− t

0− 0
N1,0(t) = 0 −∞ < t < ∞

N1,1(t) =
t− 0
0− 0

N1,0(t) +
1− t

1− 0
N2,0(t) =

{
1− t

0
0 ≤ t < 1
otherwise

N3,1(t) =
t− 1
2− 1

N3,0(t) +
3− t

3− 2
N4,0(t) =





t− 1
3− t

0

1 ≤ t < 2
2 ≤ t < 3
otherwise

N6,1(t) =
t− 4
4− 4

N6,0(t) +
5− t

5− 4
N7,0(t) =

{
5− t

0
4 ≤ t < 5
otherwise

All the following second-degree basis functions are zero everywhere except on the
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1 2 3 4 5

1 N

N N N

N N

N

1,1

2,1 3,1 4,1

5,1 6,1

7,1

Figure 2.1: The nonzero first-degree basis functions generated by the knot vector
U = (0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5).

specified intervals.

N0,2(t) =
t− 0
0− 0

N0,1(t) +
1− t

1− 0
N1,1(t) = (1− t)2 0 < t < 1

N1,2(t) =
t− 0
1− 0

N1,1(t) +
2− t

2− 0
N2,1(t) =

{
2t− 3

2 t2

1
2 (2− t)2

0 ≤ t < 1
1 ≤ t < 2

N2,2(t) =
t− 0
2− 0

N2,1(t) +
3− t

3− 1
N3,1(t) =





1
2 t2

− 3
2 + 3t− t2

1
2 (3− t)2

0 ≤ t < 1
1 ≤ t < 2
2 ≤ t < 3

N5,2(t) =
t− 3
4− 3

N5,1(t) +
5− t

5− 4
N6,1(t) =

{
(t− 3)2

(5− t)2
3 ≤ t < 4
4 ≤ t < 5

N6,2(t) =
t− 4
5− 4

N6,1(t) +
5− t

5− 4
N7,1(t) = 2 (t− 4) (5− t) 4 ≤ t < 5

The example shows the effect of so-called multiple knots. A knot’s multiplic-
ity is defined by the number of times a knot value emerges in a knot vec-
tor. For instance, t = 0 has multiplicity three in the present knot vector
U = (0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5).
The multiplicity of a knot with respect to a specific basis function Ni,p(t) is the
number of times a knot value emerges in the span (ui, ..., ui+p+1) of the knot
vector. This span is exactly the domain of the knot vector which is decisive
for the computing of the basis functions Ni,p(t), see property 2.2.2. The func-
tions N0,2(t), N1,2(t), N2,2(t), and N5,2(t) of our example are computed on the
following spans of the knot vector U :

N0,2 : (0, 0, 0, 1) N1,2 : (0, 0, 1, 2) N2,2 : (0, 1, 2, 3)
N5,2 : (3, 4, 4, 5) N6,2 : (4, 4, 5, 5) .
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1 2 3 4 5

1 N0,2

N1,2

N2,2 N
3,2

N4,2

N5,2

N6,2

N7,2

Figure 2.2: The nonzero second-degree basis functions generated by a knot
vector U = (0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5).

With respect to these functions, t = 0 is a knot of multiplicity 3, 2, 1, and 0,
respectively. As it can be seen in figure 2.2, at t = 0 N0,2(t) is discontinuous,
N1,2(t) C0-continuous, N2,2(t) C1-continuous, and for N5,2(t) all its derivatives
are zero. This effect reflects in

Theorem 2.2.6. All derivatives of Ni,p (t) exist in the interior of a knot span.
At a knot Ni,p (t) is p − k times continuously differentiable, where k is the
multiplicity of the knot with respect to Ni,p (t), and the derivative of a basis
function is given by

N ′
i,p(t) =

p

ui+p − ui
Ni,p−1 (t)− p

ui+p+1 − ui+1
Ni+1,p−1 (t) . (2.2)

Proof: We show the formula by induction on p. For p = 1, Ni,p−1 (t) and
Ni+1,p−1 (t) are either 0 or 1, and thus N ′

i,p (t) is either

1
ui+1 − ui

or
1

ui+2 − ui+1
.

Now assume that equation (2.2) is true for p − 1, p > 1. By using the product
rule, (fg)′ = f ′g + fg′, to differentiate the basis function

Ni,p =
t− ui

ui+p − ui
Ni,p−1 +

ui+p+1 − t

ui+p+1 − ui+1
Ni+1,p−1

yields

N ′
i,p =

1
ui+p − ui

Ni,p−1 +
t− ui

ui+p − ui
N ′

i,p−1

− 1
ui+p+1 − ui+1

Ni+1,p−1 +
ui+p+1 − t

ui+p+1 − ui+1
N ′

i+1,p−1. (2.3)
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Substituting equation (2.2) into equation (2.3) for N ′
i,p−1(t) and N ′

i+1,p−1(t)
yields

N ′
i,p =

1
ui+p − ui

Ni,p−1 − 1
ui+p+1 − ui+1

Ni+1,p−1

+
t− ui

ui+p − ui

(
p− 1

ui+p−1 − ui
Ni,p−2 − p− 1

ui+p − ui+1
Ni+1,p−2

)

+
ui+p+1 − t

ui+p+1 − ui+1

(
p− 1

ui+p − ui+1
Ni+1,p−2 − p− 1

ui+p+1 − ui+2
Ni+2,p−2

)

=
1

ui+p − ui
Ni,p−1 − 1

ui+p+1 − ui+1
Ni+1,p−1

+
p− 1

ui+p − ui

t− ui

ui+p−1 − ui
Ni,p−2

+
p− 1

ui+p − ui+1

(
ui+p+1 − t

ui+p+1 − ui+1
− t− ui

ui+p − ui

)
Ni+1,p−2

− p− 1
ui+p+1 − ui+1

ui+p+1 − t

ui+p+1 − ui+2
Ni+2,p−2.

By

ui+p+1 − t

ui+p+1 − ui+1
− t− ui

ui+p − ui
= −ui+p+1 − ui+1

ui+p+1 − ui+1
+

ui+p+1 − t

ui+p+1 − ui+1

+
ui+p − ui

ui+p − ui
− t− ui

ui+p − ui

=
ui+p − t

ui+p − ui
− t− ui+1

ui+p+1 − ui+1

we obtain

N ′
i,p =

1
ui+p − ui

Ni,p−1 − 1
ui+p+1 − ui+1

Ni+1,p−1

+
p− 1

ui+p − ui

(
t− ui

ui+p−1 − ui
Ni,p−2 +

ui+p − t

ui+p − ui+1
Ni+1,p−2

)

− p− 1
ui+p+1 − ui+1

(
t− ui+1

ui+p − ui+1
Ni+1,p−2 +

ui+p+1 − t

ui+p+1 − ui+2
Ni+2,p−2

)
.

By the definition of the B-spline basis functions (2.2.1), the expressions in paren-
theses can be replaced by Ni,p−1(t) and Ni+1,p−1(t), respectively. It follows that

N ′
i,p =

1
ui+p − ui

Ni,p−1 − 1
ui+p+1 − ui+1

Ni+1,p−1

+
p− 1

ui+p − ui
Ni,p−1 − p− 1

ui+p+1 − ui+1
Ni+1,p−1

=
p

ui+p − ui
Ni,p−1 − p

ui+p+1 − ui+1
Ni+1,p−1,
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which is the above-quoted expression.
Now let N

(k)
i,p (t) denote the kth derivative of Ni,p (t). Repeated differentiation

of equation (2.2) produces the general formula

N
(k)
i,p = p

(
N

(k−1)
i,p−1

ui+p − ui
− N

(k−1)
i+1,p−1

ui+p+1 − ui+1

)
. (2.4)

Now the other statements are observable more easily. In the interior of a knot
span Ni,p (t) is a polynomial and hence all derivatives exist. At a knot t with
multiplicity k all Ni,p−s (t) , s = k, ..., p are not continuously differentiable. This
merely results in a p− k times continuous differentiability at a knot.

A common choice for the knot vector for basis functions of degree p is setting
the first p + 1 knots 0, the last p + 1 knots 1 and the interior knots equally
spaced;

u0 = u1 = ... = up = 0

uj =
j − p

m− 2p
for j = p + 1, ..., m− p− 1

um−p = ... = um = 1.

This so-called uniform knot vector has the form

U = {0, ..., 0︸ ︷︷ ︸
p+1

,
1

m− 2p
, ...,

m− 2p− 1
m− 2p

, 1, ..., 1︸ ︷︷ ︸
p+1

}. (2.5)

In this case we get the basis functions illustrated in figure 2.3.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1 N0,2

N1,2

N
2,2

N3,2 N4,2

N5,2

N6,2

Figure 2.3: The nonzero second-degree basis functions generated by a knot
vector U =

(
0, 0, 0, 1

5 , 2
5 , 3

5 , 4
5 , 1, 1, 1

)
.

An important special cases illustrates

14



Example 2.2.7. Let U = (0, 0, 0, 1, 1, 1) and p = 2. The basis functions of
degree 2 are

N0,2(t) =
{

(1− t)2

0
0 ≤ t < 1
otherwise

N1,2(t) =
{

2t (1− t)
0

0 ≤ t < 1
otherwise

N2,2(t) =
{

t2

0
0 ≤ t < 1
otherwise

The Ni,2(t), restricted to the interval [0, 1], are the quadratic Bernstein polyno-
mials.

Generally, the B-spline representation with m = 2p+1 and a knot vector of the
form

U = (0, ..., 0︸ ︷︷ ︸
p+1

, 1, ..., 1︸ ︷︷ ︸
p+1

)

is on the unit interval the same as the Bézier representation.

2.3 B-Spline Curves

2.3.1 The Definition and Properties of B-Spline Curves

Definition 2.3.1. A pth-degree B-spline curve is defined by

C (t) =
n∑

i=0

Ni,p (t)Pi a ≤ t ≤ b. (2.6)

The Pi are the control points, and the Ni,p (t) are the pth-degree B-spline basis
functions defined on a knot vector

U = (a, ..., a︸ ︷︷ ︸
p+1

, up+1, ..., un, b, ..., b︸ ︷︷ ︸
p+1

)

with m + 1 knots, where the degree p, the number of control points, n + 1, and
the number of knots are related by

n := m− p− 1.

The polygon formed by the Pi is called the control polygon.

Unless stated differently, we assume that a = 0 and b = 1.
To give an introductory idea of B-spline techniques we start with

Example 2.3.2. Let U be a uniform knot vector as defined in equation (2.5),
p = 2 and the set of control points

{Pi} = {(−1, 0) , (−0.9, 1) , (−0.2, 1.3) , (−0.5,−1) , (0.7,−1) , (0.1, 0.5) , (1, 1)} .

Figure 2.4 shows the resulting B-Spline curve.
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Figure 2.4: B-Spline curve using the conditions of example 2.3.2.

In the following are a number of properties and theorems of B-spline curves.
Most of them follow from those given in section 2.2 for the functions Ni,p (t).
Property 2.3.3. If U = (0, ..., 0, 1, ..., 1), C (t) is a Bézier curve. (See example
2.2.7.) Thus B-spline curves may be viewed as a generalization of Bézier curves.

Property 2.3.4. Endpoint interpolation: C (0) = P0 and C (1) = Pn.

Lemma 2.3.5. Affine invariance: An affine transformation is applied to the
curve by applying it to the control points.

Proof: An affine transformation of the plane, denoted by Φ, maps R2 into R2

and has the form
Φ (X) = AX + V,

where A is a 2×2 matrix and V is a vector. The affine invariance property for B-
spline curves follows from the partition of unity property of the Ni,p (t) (Lemma
2.2.4). We have C(t) =

∑
Ni,p(t)Pi, where Pi ∈ R2 and

∑
Ni,p(t) = 1. Thus

Φ (C(t)) = Φ
(∑

Ni,p(t)Pi

)
= A

(∑
Ni,p(t)Pi

)
+ V

=
∑

Ni,p(t)APi +
∑

Ni,p(t)V

=
∑

Ni,p(t) (APi + V) =
∑

Ni,p(t)Φ (Pi) .
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Property 2.3.6. Local support: Moving Pi changes C (t) only in the interval
[ui, ui+p+1) (Figure 2.5). This follows from the fact that Ni,p (t) = 0 for t /∈
[ui, ui+p+1) (Property 2.2.2).

-1 -0.5 0.5 1

-1

-0.5

0.5

1

0

1

2

3

4

5

6

7

0

1

2

3
4'

5

6

7

Figure 2.5: A curve with degree p = 2 on U =
(
0, 0, 0, 1

6 , 2
6 , 3

6 , 4
6 , 5

6 , 1, 1, 1
)
;

moving P4 to P4′ changes the curve in the interval
[
2
6 , 5

6

)
.

Moving along the curve from t = 0 to t = 1, the functions Ni,p (t) act like
switches. As t moves past a knot, one Ni,p (t) and the corresponding Pi switches
off and Pi+p+1 switches on.
The control polygon represents an approximation to the curve. As a rule, the
lower the degree, the closer a B-spline curve follows its control polygon. The
curves of Figure 2.6 are defined using the same six control points, and the knot
vectors

p = 1 : U =
(

0, 0,
1
5
,
2
5
,
3
5
,
4
5
, 1, 1

)

p = 2 : U =
(

0, 0, 0,
1
4
,
2
4
,
3
4
, 1, 1, 1

)

p = 3 : U =
(

0, 0, 0, 0,
1
3
,
2
3
, 1, 1, 1, 1

)

p = 4 : U =
(

0, 0, 0, 0, 0,
1
2
, 1, 1, 1, 1, 1

)

p = 5 : U = (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) .

The reason for this phenomenon is intuitive. The lower the degree, the fewer
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Figure 2.6: B-spline curves of different degree, using the same control polygon.

the control points that contribute to the computation of C (t0) for any given
t0. The extreme case is p = 1, for which every point C (t) is just a linear
interpolation between two control points. In this case, the curve coincides with
the control polygon.

The two further characteristics are not of importance for our application to
Ostracode contour data, but they are interesting from a mathematical point
of view. I will reflect on them merely in an abbreviated version without exact
proofs.
Property 2.3.7. Convex hull property: The curve is contained in the
convex hull of its control polygon. More precisely, if t ∈ [ui, ui+1), p < i <
m− p− 1, then C (t) is in the convex hull of the control points Pi−p, ...,Pi (see
figure 2.7). This follows from the nonnegativity and partition of unity properties
of the Ni,p (t) (Properties 2.2.3 and 2.2.4), and the property that Nj,p (t) = 0
for j < i − p and j > i when t ∈ [ui, ui+1) (Property 2.2.2). The values of the
B-Spline curve are the result of a convex combination of the concerning control
points.

Property 2.3.8. Variation diminishing property: No straight line has
more intersections with the curve than with the control polygon - see [18] for
proof.
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2
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5

6

Figure 2.7: The convex hull property for a quadratic B-spline curve; for t ∈
[u5, u6), C(t) is in the triangle P3,P4,P5.

2.3.2 Closed B-Spline Curves

On a closed B-spline curve the first and the last control point coincides;

P0 = Pn+1.

To maintain the differentiability it is necessary to complement the knot vector
periodically by

um+1 := u0, um+2 := u1, ...

As a result, the basis functions take effect on the following knots

N0,p : (u0, ..., up)
N1,p : (u1, ..., up+1)

...
Nm−2,p : (um−2, um−1, um, u0, u1, ..., up−3)
Nm−1,p : (um−1, um, u0, ..., up−2)

Nm,p : (um, u0, .., up−1)

and this makes the basis functions seem to be periodically continued.
To construct uniform closed B-spline curves the knots are chosen equally spaced,
concretely

uj =
j

m + 1
for j = 0, ..., m + 1.

Figure 2.8 illustrates these basis functions of degree 2 and figure 2.9 shows an
example of a closed B-spline curve.
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Figure 2.8: The basis functions of a closed B-spline curve with an uniform knot
vector, p = 2.
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Figure 2.9: A closed B-spline curve of degree 2.

2.3.3 The Derivatives of a B-Spline Curve

The differentiability of a B-spline curve C (t) =
∑n

i=0 Ni,p (t)Pi follows imme-
diately from that of the Ni,p (t) since C (t) is just a linear combination of the
Ni,p (t). Thus, C (t) is infinitely differentiable in the interior of knot intervals,
and it is at least p− k times continuously differentiable at a knot of multiplic-
ity k (see theorem 2.2.6). The comment “at least” arises from the simple fact
that discontinuous functions can be combined in such a way that the result is
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continuous.

Let C(k) (t) denote the kth derivative of C (t). If t is fixed, we can obtain C(k) (t)
by computing the kth derivatives of the basis functions (see equations (2.2) and
(2.4)). This means

C(k) (t) =
n∑

i=0

N
(k)
i,p (t)Pi. (2.7)

Let us explicitly differentiate a pth-degree B-spline curve

C (t) =
n∑

i=0

Ni,p (t)Pi

defined on the knot vector

U = (0, ..., 0︸ ︷︷ ︸
p+1

, up+1, ..., un, 1, ..., 1︸ ︷︷ ︸
p+1

).

From equations (2.7) and (2.2) we obtain

C′ (t) =
n∑

i=0

N ′
i,p (t)Pi

=
n∑

i=0

(
p

ui+p − ui
Ni,p−1 (t)− p

ui+p+1 − ui+1
Ni+1,p−1 (t)

)
Pi.

Decreasing the index i of the first term yields

C′ (t) =

(
p

n−1∑

i=−1

Ni+1,p−1 (t)
Pi+1

ui+p+1 − ui+1

)

−
(

p

n∑

i=0

Ni+1,p−1 (t)
Pi

ui+p+1 − ui+1

)

= p
N0,p−1 (t)P0

up − u0
+ p

n−1∑

i=0

Ni+1,p−1 (t)
Pi+1 −Pi

ui+p+1 − ui+1
− p

Nn+1,p−1 (t)Pn

un+p+1 − un+1
.

The first and last terms evaluate to 0
0 which is 0 by definition. Thus

C′ (t) = p

n−1∑

i=0

Ni+1,p−1 (t)
Pi+1 −Pi

ui+p+1 − ui+1
=

n−1∑

i=0

Ni+1,p−1 (t)Qi,

where
Qi = p

Pi+1 −Pi

ui+p+1 − ui+1
. (2.8)
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Now let U ′ be the knot vector obtained by dropping the first and last knot from
U , i.e.

U ′ = (0, ..., 0︸ ︷︷ ︸
p

, up+1, ..., un, 1, ..., 1︸ ︷︷ ︸
p

).

U ′ has m− 1 knots now and the function Ni+1,p−1 (t), computed on U , is equal
to Ni,p−1 (t) computed on U ′. Thus

C′ (t) =
n−1∑

i=0

Ni,p−1 (t)Qi (2.9)

where the Qi are defined by equation (2.8), and the Ni,p−1 (t) are computed on
U ′.
Hence, C′ (t) is a (p− 1)th-degree B-spline curve and applying equation (2.8)
through (2.9) recursively yields higher derivatives. Let P(0)

i = Pi and

C (t) = C(0) (t) =
n∑

i=0

Ni,p (t)P(0)
i .

Then

C(k) (t) =
n−k∑

i=0

Ni,p−k (t)P(k)
i

with

P(k)
i =

{
Pi for k = 0

p−k+1
ui+p+1−ui+k

(
P(k−1)

i+1 −P(k−1)
i

)
for k > 0

and
U (k) = (0, ..., 0︸ ︷︷ ︸

p−k+1

, up+1, ..., un, 1, ..., 1︸ ︷︷ ︸
p−k+1

).

We can use this facility to examine two interesting and convenient effects of
2nd-degree B-spline curves.
Property 2.3.9. Let C (t) be a 2nd-degree B-spline curve with two coincident
control points Pj = Pj+1, j ∈ {1, ..., n− 1}. Since

C (t) =
n∑

i=0

Ni,2Pi

= Nj−1,2Pj−1 + Nj,2Pj + Nj+1,2 Pj+1︸ ︷︷ ︸
=Pj

= Nj−1,2Pj−1 + (Nj,2 + Nj+1,2)Pj

is a linear combination of just two control points for t ∈ [uj+1, uj+2), the curve
between C (uj+1) and C (uj+2) becomes a straight line. Figure 2.10 shows a
quadratic curve with a double control point P2 = P3. The curve segments
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between C
(

1
4

)
and C

(
1
2

)
as well as C

(
1
2

)
and C

(
3
4

)
coincide with the control

polygon. Furthermore, since the knot u4 = 1
2 has a multiplicity of 1, the curve

must be C1-continuous there, even though it has a cusp. This is a result of the
magnitude of the first derivative vector going continuously to zero at t = 1

2 ,
since P3 −P2 = 0.

0

1

2 = 3

4

5

Figure 2.10: A quadratic curve on U =
(
0, 0, 0, 1

4 , 1
2 , 3

4 , 1, 1, 1
)
; P2 = P3 is a

double control point.

Of particular importance with regard to the approximation of outline data of
ostracodes is
Property 2.3.10. For a quadratic B-spline curve C(t), at each knot uj , j ∈
{p + 1, ..., n}, the segment Pj−2Pj−1 of the control polygon coincides with the
tangent at C (uj).
Proof: At C (uj) the curve touches its control polygon at the center of the
segment Pj−2Pj−1, since

C (uj) =
n∑

i=0

Ni,2 (uj)Pi

= Nj−1,2 (uj)Pj−2 + Nj−1,2 (uj)Pj−1

=
1
2

(Pj−2 + Pj−1) .
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Furthermore, the direction of the derivative vector

C′ (uj) = 2
n−1∑

i=0

Ni+1,1 (uj)
Pi+1 −Pi

ui+3 − ui+1

= 2Nj−2,1 (uj)
Pj−1 −Pj−2

uj+1 − uj−1

= 2
Pj−1 −Pj−2

2
m−4

= (n− 1) (Pj−1 −Pj−2)

coincides with the direction of the line segment Pj−2Pj−1.

2.4 Approximation to Point Data with B-Spline
Curves

In this section we study the construction of B-spline curves which should fit a
rather arbitrary set of geometric data, such as points or derivative vectors. We
take again the theoretical concept of [15] and [23]. Additionally we make use of
the PhD-thesis of Franz-Josef Schneider, [28], on approximation and interpola-
tion of rational B-spline curves. The description of the approximation using the
singular-value decomposition and the pseudo-inverse matrix, see section 2.4.2,
was gathered from several textbooks of linear algebra and numerical analysis,
such as [9], [13], [19], [29], [31] and [33].

Initially, it is necessary to distinguish two types of fitting, interpolation and
approximation. In interpolation, we construct a curve which satisfies the given
data precisely, e.g., the curve passes through the given points (and assumes the
given derivatives) at the prescribed points, what is a special case of the approx-
imation. The aim there is to construct curves which do not necessarily satisfy
the given data in an exact way, but only approximately. In some applications -
such as ours - a large number of points is generated, which can contain measure-
ment errors or computational noise. In this case, it is important for the curve
to capture the “shape” of the data, but not to “wiggle” its way through each
single point.

A problem is that a given set of data points does not specify a unique solu-
tion. There is an infinite number of B-spline curves which can interpolate or
approximate data items. An eligible algorithm has to calculate control points,
knots, and, in case of NURBS, which are discussed in the next section, weights.
Furthermore, either the degree p must be input or the algorithm must select an
appropriate degree. If Cr continuity is desired for a curve, the chosen degree p
must satisfy p ≥ r + 1 (assuming no interior knots of multiplicity > 1).

The fitting algorithm presented in this section confines to the essential. The
only unknowns are the control points. All weights are simply set to 1, so the
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algorithm provides just B-spline curves, no NURBS. The degree is preselected
in advance and the knot vector is set to be uniform (see equation (2.5)). With
this algorithm, a system of equations is set up and solved. The system is linear
and hence easy to solve. [28] describes an algorithm which takes additional
parameters into consideration.

2.4.1 Interpolation to Point Data

Given is a set of points {Qk}, k = 0, ..., n, which we want to interpolate with a
pth-degree B-spline curve. If we assign a parameter value, tk, to each Qk, and
select an appropriate knot vector U = (u0, ..., um), we can set up a (n + 1) ×
(n + 1) system of linear equations

Qk = C (tk) =
n∑

i=0

Ni,p (tk)Pi. (2.10)

The control points Pi are the n + 1 unknowns. This method is independent of
the number of coordinates in the Qk, denoted by r (typically 2). The system of
linear equations (2.10) has one matrix with r solution sets for the r coordinates
of the Pi.
The choice of the tk and U affects the shape of the curve enormously. We assume
that the parameter lies in the range t ∈ [0, 1]. The three common methods of
choosing the tk are:

• Equally spaced:

t0 = 0

tk =
k

n
k = 1, ..., n− 1

tn = 1 (2.11)

This method is not recommended, as it can produce erratic shapes such
as loops. When the data are unevenly spaced, the curve is traversed with
different speed between the knot spans.

• Chord length: Let d be the total chord length

d =
n∑

k=1

‖Qk −Qk−1‖

Then

t0 = 0

tk = tk−1 +
‖Qk −Qk−1‖

d
k = 1, ..., n− 1

tn = 1 (2.12)
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This is the most widely used method, and it is generally adequate, since it
gives a “good” parameterization to the curve, in the sense that it approx-
imates a uniform parameterization as the parameters are proportionally
to the total length.

• Centripetal method: Let

d =
n∑

k=1

√
‖Qk −Qk−1‖

Then

t0 = 0

tk = tk−1 +

√
‖Qk −Qk−1‖

d
k = 1, ..., n− 1

tn = 1 (2.13)

When the data take very sharp turns, this rather new method gives better
results than the chord length method.

The knots can be chosen equally spaced, that is

u0 = ... = up = 0

uj+p =
j

n− p + 1
j = 1, ..., n− p

um−p = ... = um = 1. (2.14)

This method has a shortcoming. Used in combination with equation (2.12)
or (2.13) it can result in a singular system of equations (2.10). Piegl, [23],
recommends to use the following technique of averaging

u0 = ... = up = 0

uj+p =
1
p

j+p−1∑

i=j

ti j = 1, ..., n− p

um−p = ... = um = 1. (2.15)

With this method, the knots reflect the distribution of the tk. Besides, using
equation (2.15) combined with equation (2.12) or (2.13) to compute the tk, leads
to a system (2.10) which is totally positive and banded with a semibandwidth
less than p, that is, Ni,p (tk) = 0 if |i− k| ≥ p. Hence, it can be solved by
Gaussian elimination without pivoting (see [8],[23]).
Figure 2.11 shows a comparison using such irregular scattered data points. In
both cases a cubic curve is passed through seven points. The green curve uses
uniform parameters and uniform knots (equations (2.11) and (2.14)). The red
curve applies centripetal parameters and knots obtained by averaging (equations
(2.13) and (2.15)).
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Figure 2.11: A curve interpolation example with different parameterizations and
knot vectors.

Example 2.4.1. Let {Qk} = {(0, 0) , (3, 4) , (−1, 4) , (−4, 0) , (−4,−3)}. We
want to interpolate the Qk with a cubic curve. We use equations (2.12) and
(2.15) to compute the tk and uj and then set up the system of linear equations
(2.10). The chord lengths are

‖Q1 −Q0‖ = 5 ‖Q2 −Q1‖ = 4 ‖Q3 −Q2‖ = 5 ‖Q4 −Q3‖ = 3

and the total chord length is d = 17. Thus

t0 = 0 t1 =
5
17

t2 =
9
17

t3 =
14
17

t4 = 1.

Using equation (2.15) yields

u4 =
1
3

(
5
17

+
9
17

+
14
17

)
=

28
51

and hence

U =
(

0, 0, 0, 0,
28
51

, 1, 1, 1, 1
)

.
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The system of linear equations is



1 0 0 0 0
N0,3

(
5
17

)
N1,3

(
5
17

)
N2,3

(
5
17

)
N3,3

(
5
17

)
0

N0,3

(
9
17

)
N1,3

(
9
17

)
N2,3

(
9
17

)
N3,3

(
9
17

)
0

0 N1,3

(
14
17

)
N2,3

(
14
17

)
N3,3

(
14
17

)
N4,3

(
14
17

)
0 0 0 0 1







P0

P1

P2

P3

P4




=




Q0

Q1

Q2

Q3

Q4




,

quantified



1 0 0 0 0
0.1 0.56 0.3 0.05 0
0 0.23 0.5 0.27 0
0 0.01 0.16 0.61 0.23
0 0 0 0 1







P0

P1

P2

P3

P4




=




Q0

Q1

Q2

Q3

Q4




,

which results in

P0 = (0, 0) P1 = (7.32, 2.96)
P2 = (−2.96, 8.46) P3 = (−4.49,−3.35)
P4 = (−4, 3) ,

see figure 2.12.
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Figure 2.12: Interpolation of the data points of example 2.4.1.

Interpolation with End Derivatives Specified

It is not uncommon to specify derivative vectors of the starting and the end
point as input data. Moreover, it is advisable to be used if one wants to merge
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several curves to one continuous differentiable curve. In this case, the solution
process is quite similar to the previous scheme.
Again let {Qk}, k = 0, ..., n, be points, and D0 and Dn be the first derivative
vectors at the starting and the end point of a curve. The data received is
interpolated with a pth-degree curve

C (t) =
n+2∑

i=0

Ni,p (t)Pi

As before, the tk, k = 0, ..., n, are computed by applying equation (2.11), (2.12)
or (2.13). We have to include additional knots into the knot vector. This can
be done by setting

u0 = ... = up = 0
um−p = ... = um = 1

uj+p+1 =
j

n− p + 1
j = 0, ..., n− p + 1

or

uj+p+1 =
1
p

j+p−1∑

i=j

ti j = 0, ..., n− p + 1.

This yields n + 1 equations

Qk = C (tk) =
n+2∑

i=0

Ni,p (tk)Pi. (2.16)

The first derivatives at the endpoints of a B-spline curve are given by

C′ (0) =
p

up+1
(P1 −P0)

C′ (1) =
p

1− um−p−1
(Pn −Pn−1) ,

see section 2.3.3. Thus, we get two additional equations, i.e.

−P0 + P1 =
up+1

p
D0

−Pn+1 + Pn+2 =
1− um−p−1

p
Dn.

Inserting them into the system of equations (2.16) leads to a (n + 3)× (n + 3)
linear system to be solved.

Curve Interpolation with First Derivatives Specified

We assume now that the first derivative, Dk, is given at every point, Qk, k =
0, ..., n. There are 2 (n + 1) data items and that many unknown control points.
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The n + 1 equations expressing the Qk are

Qk = C (tk) =
2n+1∑

i=0

Ni,p (tk)Pi (2.17)

and the n + 1 equations expressing the Dk are

Dk = C′ (tk) =
2n+1∑

i=0

N ′
i,p (tk)Pi. (2.18)

The parameters tk are computed as before and the number of knots is 2 (n + 1)+
p + 1. The knots should be chosen to reflect the distribution of the tk. A
satisfactory choice for p = 2 is

U =
(

0, 0, 0,
t1
2

, t1,
t1 + t2

2
, t2, ..., tn−1,

tn−1 + 1
2

, 1, 1, 1
)

or

U =
(

0, 0, 0, 0,
t1
2

,
2t1 + t2

3
,
t1 + 2t2

3
, ...,

tn−2 + 2tn−1

3
,
tn−1 + 1

2
, 1, 1, 1, 1

)

for cubic curves. Equations (2.17) and (2.18) are merged now to yield a 2 (n + 1)×
2 (n + 1) linear system. For example, the system of equations for a curve of de-
gree 3 is

P0 = Q0

−P0 + P1 =
t1
6

D0

N1,3 (t1)P1 + ... + N4,3 (t1)P4 = Q1

N ′
1,3 (t1)P1 + ... + N ′

4,3 (t1)P4 = D1

...
N2n−3,3 (tn−1)P2n−3 + ... + N2n,3 (tn−1)P2n = Qn−1

N ′
2n−3,3 (tn−1)P2n−3 + ... + N ′

2n,3 (tn−1)P2n = Dn−1

−P2n + P2n+1 =
1− tn−1

6
Dn

P2n+1 = Qn

2.4.2 Approximation to Point Data

The interpolation scheme above presupposes that the number of points to in-
terpolate is less than or equal to the number of control points. In this case, we
always get an accurate solution of the linear system of equations, which means
that the calculated B-spline curve passes through all given data points.
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Typically, it is necessary to find a B-spline curve approximating a large number
of points or even clusters of points. In general, we will not get an exact solution
of the system of equations.
The best way to overcome this difficulty is to solve the system in the sense of
minimizing the sum of the squared differences between the given set of data
points {Qi} and the appropriate values of the B-Spline curve C (ti),

m∑

i=0

‖C (ti)−Qi‖2 =
m∑

i=0

‖
n∑

j=0

Nj,p (ti)Pj −Qi‖2 −→ min .

Notice that all Pj and Qi are points in R2. This results in two systems of
equations to be solved separately, which can easily be done since ‖x‖2 = x2

1 +x2
2

and as a consequence

m∑

i=0

‖
n∑

j=0

Nj,p (ti)Pj −Qi‖2 =

=
m∑

i=0

(
n∑

j=0

Nj,p (ti) p
(1)
j − q

(1)
i )2 +

m∑

i=0

(
n∑

j=0

Nj,p (ti) p
(2)
j − q

(2)
i )2, (2.19)

where p(k) denotes the kth coordinate of Pj . Without loss of generality we take
the first coordinate to elucidate the following process. It can be applied to the
second coordinate analogously.
The left sum of equation (2.19), written in an other notation, is

‖AP−Q‖2 −→ min,

where P =




p
(1)
0

...
p
(1)
n


, Q =




q
(1)
0

...
q
(1)
m


 and A ∈ R(m+1)×(n+1) is the matrix (aij)

with aij = Nj,p (ti).
A solution to the minimization problem brings

Lemma 2.4.2. Let S =
(
p
(1)
0 , ..., p

(1)
n

)
∈ Rn+1 be a solution of the set of normal

equations
AT AP = AT Q,

then S fulfils the condition

‖AS−Q‖2 ≤ ‖AP−Q‖2 ∀P ∈ Rn+1.

Proof: Let S ∈ Rn+1 be a solution of AT AP = AT Q, hence

AT AS = AT Q

⇒ AT (AS−Q) = 0.
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That implies

(AP−AS) · (AS−Q) = A (P− S) · (AS−Q)

= (P− S)T
AT (AS−Q)︸ ︷︷ ︸

=0

= 0,

since

A ·B =




a1

...
an


 ·




b1

...
bn


 = a1b1 + ... + anbn = (a1, ..., an)




b1

...
bn


 = AT B,

if the vectors A,B are set A = A (P− S) resp. B = AS−Q and comprehended
as single column matrices. As a consequence AP−AS and AS−Q are orthogonal
and by the use of Pythagoras theorem

‖AP−Q‖2 = ‖AP−AS‖2︸ ︷︷ ︸
≥0

+ ‖AS−Q‖2 ≥ ‖AS−Q‖2 .

AT A is a (n + 1) × (n + 1)-matrix since A ∈ R(m+1)×(n+1) and, thus, AT ∈
R(n+1)×(m+1). Accordingly the linear system of normal equations has the solu-
tion

P =
(
AT A

)−1
AT Q

and this is an approximative solution of the system AP = Q.

Approximation with Singular Value Decomposition and Pseudo-Inverses

The method presented above has two decisive disadvantages. First, the term(
AT A

)−1
AT cannot be assigned for every matrix A. E.g. if A is a singular

matrix, then AT A is singular as well and an inverse matrix cannot be computed.
Second, for a non-singular or rectangular matrix A is AT A usually rather ill-
conditioned, what means that changes in the entries of the matrix A or the
vector Q can cause relatively large changes in the solution to AP = Q. A
comprehensive description of the theory of condition numbers and round-off
errors can be found in [29] or [31] and in many other textbooks about Linear
Algebra or Numerical Analysis.
To exemplify this effect, I work out the conditioning of the previous example.

Example 2.4.3. Let A be the computed 5 × 5-matrix of the system of linear
equations in example 2.4.1

A =




1 0 0 0 0
0.1 0.56 0.3 0.05 0
0 0.23 0.5 0.27 0
0 0.01 0.16 0.61 0.23
0 0 0 0 1




,
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hence

AT A =




1.01 0.056 0.03 0.005 0
0.056 0.3666 0.2846 0.0962 0.0023
0.03 0.2846 0.3656 0.2476 0.0368
0.005 0.0962 0.2476 0.4475 0.1403
0 0.0023 0.0368 0.1403 1.0529




.

The condition number c of the symmetric and positive definite matrix AT A is
given by

c =
λmax

λmin

where λmax is the greatest and λmin the smallest eigenvalue of AT A. This results
in

c = 25.4673

for our system of linear equations. This figure shows that the relative error in
the calculated solution to our system AP = Q could be as much as 25 times
the relative error of the entries of A or P. In matrix A the entries are just
accurate to two decimal places. A small round-off error of 0.005 occurring in
the reduction process can change the first digit after the comma.

For non-singular square matrices it is obvious that a solution of the system of
equations can be found by using the inverse matrix

P = A−1Q.

What is needed is a generalization of the inverse matrix. More concretely, we
seek for a so-called Pseudo-Inverse matrix A+ representing the solution of the
least square problem of lemma 2.4.2

P =
(
AT A

)−1
AT Q.

The singular value decomposition provides the key to solve this problem.

Theorem 2.4.4. Let A ∈ Rm×n a matrix of rank r. Then there exist orthogonal
matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV T ,

where

Σ =




σ1 0 · · · 0
. . .

...
...

σr 0 · · · 0
0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0




with
σ1 ≥ ... ≥ σr > σr+1 = ... = σmin(m,n) = 0,

called the singular values of A.

33



The proof of the theorem is quite laborious and therefore omitted here. Most
textbooks of Linear Algebra accomplish the proof, such as [9], [19], [29], [31],
[33].

If A is a non-singular n × n matrix with singular value decomposition UΣV T ,
the inverse matrix is given by

A−1 = V Σ−1UT .

Pertaining to this inverse matrix we attain the Pseudo-Inverse by

Definition 2.4.5. The pseudo-inverse matrix of A is given by

A+ := V Σ+UT ,

where Σ+ is the n×m matrix

Σ+ =




1
σ1

0 · · · 0
. . .

...
...

1
σr

0 · · · 0
0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0




.

σ1, ..., σr are the singular values of A and U, V are orthogonal matrices such
that A = UΣV T .

To see how the pseudo-inverse matrix can be used in solving the least square
problem, we consider the case where A is a m× n-matrix of rank n. Thus, the
matrix AT A is non-singular and

(
AT A

)−1 can be converted into

(
AT A

)−1
=

(
(UΣV )T

UΣV
)−1

=
(
V ΣT UT UΣV

)−1

=
(
V ΣT ΣV T

)−1

= V
(
ΣT Σ

)−1
V T ,

since V is an orthogonal matrix. Thereby

P =
(
AT A

)−1
AT Q

= V
(
ΣT Σ

)−1
V T V ΣT UT Q

= V
(
ΣT Σ

)−1
ΣT UT Q

= V Σ+UT Q

= A+Q.

If A has full rank, A+Q is the solution of our least square problem. But imagine
the case where A has rank r < n. We get infinitely many solutions there. A
remedy brings
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Theorem 2.4.6. If A is a m × n matrix of rank r < n with singular value
decomposition UΣV T , then the vector

P = A+Q = V Σ+UT Q

minimizes ‖AP−Q‖2 and has minimal norm among all such vectors.

Proof: Let P be an arbitrary vector in Rn. We denote the ith row vector of a
matrix X by Xi. Since U is an orthogonal matrix

‖AP−Q‖2 =
∥∥UT (AP−Q)

∥∥2

=
∥∥UT AV

(
V T P

)− UT Q
∥∥2

=
r∑

i=1

(
σi

(
V T P

)
i
− UT

i Q
)2

+
n∑

i=r+1

(
UT

i Q
)2

.

∑n
i=r+1

(
UT

i Q
)2 is independent of P. Thus, it follows that ‖AP−Q‖2 will

be minimal if and only if
∑r

i=1

(
σi

(
V T P

)
i
− UT

i Q
)

= 0. Therefore

V T P =
(

UT
1 Q

σ1
, ...,

UT
r Q

σr
, αr+1, ..., αn

)T

with αr+1, ..., αn ∈ R.

Hence a solution P of minimal norm is given by

P = V

(
UT

1 Q
σ1

, ...,
UT

r Q
σr

, 0, ..., 0
)T

= V




1
σ1

0 · · · 0
. . .

...
...

1
σr

0 · · · 0
0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0







UT
1 Q
...

UT
r Q

UT
r+1 Q
...

UT
m Q




= V Σ+UT Q =A+Q.

Summarizing, if we know the singular value decomposition of A ∈ Rm×n, we can
indicate all solutions of our least square problem for an arbitrary Q ∈ Rm and
the solution P with minimal norm can be computed explicitly. Moreover, the
computation using the Pseudo-Inverse A+ is numerical more stable and inured
to perturbations.

Example 2.4.7. Consider the following matrix A and the corresponding normal
equation matrix:

A =




1 1
δ 0
0 δ


 , AT A =

(
1 + δ2 1

1 1 + δ2

)
.
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If |δ| ≤ √
ε (where ε is the machine precision), then the quantity 1+ δ2 is repre-

sented by 1 on the computer and therefore, the computed AT A is singular. We
can preserve the information about δ if we compute the pseudo-inverse matrix
using the QR decomposition, see [13].

2.5 A Brief Survey of NURBS Curves and B-
Spline Surfaces

2.5.1 NURBS Curves

There exist a number of important curve types which cannot be represented
precisely using B-spline curves, as e.g., circles, ellipses, hyperbolas. To give an
example, a circle with radius 1 in the xy plane, centered at the origin, cannot
be represented by using polynomials. Assume that

x (t) = a0 + a1t + ... + antn

y (t) = b0 + b1t + ... + bntn.

Then x2 + y2 − 1 = 0 implies that

0 = (a0 + a1t + ... + antn)2 + (b0 + b1t + ... + bntn)2 − 1
=

(
a2
0 + b2

0 − 1
)

+ 2 (a0a1 + b0b1) t +
(
a2
1 + 2a0a2 + b2

1 + 2b0b1

)
t2

+... +
(
a2

n−1 + 2an−2an + b2
n−1 + 2bn−2bn

)
t2n−2

+2 (anan−1 + bnbn−1) t2n−1 +
(
a2

n + b2
n

)
t2n.

This equation must hold for all t, which implies that all coefficients are zero.
That is for the highest degree a2

n + b2
n = 0, which implies an = bn = 0. Further-

more, a2
n−1 +2an−2an + b2

n−1 +2bn−2bn = 0 implies a2
n−1 + b2

n−1 = 0 and hence
an−1 = bn−1 = 0, etc.
After n− 1 steps, a2

1 + 2a0a2 + b2
1 + 2b0b2 = 0 implies that a1 = b1 = 0. Thus,

x (t) = a0 and y (t) = b0, which is a contradiction.
All these conic curves, including the circle, can be represented using rational
functions of the form

x (t) =
X (t)
W (t)

y (t) =
Y (t)
W (t)

,

where X (t), Y (t), and W (t) are polynomials. Each of the coordinate functions
has the same denominator.

Definition 2.5.1. A pth-degree Non-Uniform Rational B-Spline (NURBS)
curve is defined by

C (t) =
∑n

i=0 Ni,p (t)wiPi∑n
i=0 Ni,p (t)wi

a ≤ t ≤ b, (2.20)
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where the Pi are the control points (forming a control polygon), the wi are
the weights, and the Ni,p (t) are the pth-degree basis functions defined on a not
necessarily periodic (non-uniform) knot vector

U = (a, ..., a︸ ︷︷ ︸
p+1

, up+1, ..., um−p−1, b, ..., b︸ ︷︷ ︸
p+1

).

Setting

Ri,p (t) =
Ni,p (t)wi∑n

j=0 Nj,p (t)wj
(2.21)

allows us to write equation (2.20) in the form

C (t) =
n∑

i=0

Ri,p (t)Pi,

where the Ri,p (t) are the rational basis functions.

From equation (2.21) it is obvious that Ri,p (t) = Ni,p (t) if wi = a, a 6= 0 for all
i. I.e., the Ni,p (t) are just special cases of the Ri,p (t).

With the corresponding properties of the Ni,p (t) we can derive the following
properties for the Ri,p (t):
Property 2.5.2. Partition of unity:

∑n
i=0 Ri,p (t) = 1 for all t ∈ [0, 1].

Property 2.5.3. Local support: Ri,p (t) = 0 for t /∈ [ui, ui+p+1).

Property 2.5.4. All derivatives of Ri,p (t) exist in the interior of a knot span,
where it is a rational function with nonzero denominator. At a knot, Ri,p (t) is
p− k times continuously differentiable, where k is the multiplicity of the knot.

These properties yield the following geometric characteristics of NURBS curves:
Property 2.5.5. Endpoint interpolation: C (0) = P0 and C (1) = Pn.

Property 2.5.6. Affine invariance: An affine transformation is applied to
the curve by applying this transformation to the control points (see lemma
2.3.5 in section 2.3.1).

Property 2.5.7. C (t) is infinitely differentiable in the interior of knot spans
and is p− k times differentiable at a knot of multiplicity k.

Property 2.5.8. Local approximation: If the control point Pi is moved, or
the weight wi is changed, it affects only that portion of the curve on the interval
t ∈ [ui, ui+p+1). This follows from property 2.5.3.

So far, no restriction was required for the weights wi. It is proved to be very
useful to set all weights > 0 to get the other geometric properties. In case of
negative weights, the resulting curve will be repelled by the corresponding part
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of the control polygon, which is not the initial intention of geometric modelling
with B-spline curves. For positive weights, the following properties hold:
Property 2.5.9. Convex hull property: If t ∈ [ui, ui+1), then C (t) lies
within the convex hull of the control points Pi−p, ...,Pi.

Property 2.5.10. Variation diminishing property: No line has more in-
tersections with the curve than with the control polygon.

Figure 2.13 shows the effects of modifying a single weight. If wi increases resp.
decreases, the point C (t) moves closer to resp. farther from Pi, and hence the
curve is pulled toward resp. pushed away from Pi.
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Figure 2.13: Rational quadratic B-spline curves, with w3 is varying.

Example 2.5.11. For a circular arc in the xy-plane with radius 1 from (1, 0)
to (0, 1), centered in the origin, the coordinate functions are given by

x (t) =
1− t2

1 + t2
y (t) =

2t

1 + t2
for t ∈ [0, 1]

and

(
x (t)2 + y (t)2

)2

=
(

1− t2

1 + t2

)2

+
(

2t

1 + t2

)2

=
1− 2t2 + t4 + 4t2

(1 + t2)2
=

(
1 + t2

)2

(1 + t2)2
= 1.
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Hence

X (t) = 1− t2

Y (t) = 2t

W (t) = 1 + t2.

A NURBS curve with a knot vector

U =
(

0, 0, 0,
1
4
,
1
4
,
1
2
,
1
2
,
3
4
,
3
4
, 1, 1, 1

)
,

the control points

{Pi} = {(1, 0) , (1, 1) , (0, 1) , (−1, 1) , (−1, 0) , (−1,−1) , (0,−1) , (1,−1) , (1, 0)}

and the corresponding weights

{wi} =

{
1,

√
2

2
, 1,

√
2

2
, 1,

√
2

2
, 1,

√
2

2
, 1

}

yields the full circle.
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Figure 2.14: A circle constructed with the NURBS curve of example 2.5.11.

2.5.2 Surfaces

B-spline curves are vector-valued functions of just one parameter t lying in the
two-dimensional xy-plane. Let us pursue this idea into the three-dimensional
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space by choosing another parameter v. Thus, a p-th degree B-spline surface is
obtained by taking a bidirectional net of control points, two knot vectors, and
the product of the univariate basis functions

S (t, v) =
n∑

i=0

m∑

j=0

Ni,p (t)Nj,p (v)Pi,j

or for NURBS

S (t, v) =

∑n
i=0

∑m
j=0 Ni,p (t)Nj,p (v)wi,jPi,j∑n

i=0

∑m
j=0 Ni,p (t) Nj,p (v)wi,j

with

U = {0, ..., 0︸ ︷︷ ︸
p+1

, up+1, ..., un, 1, ..., 1︸ ︷︷ ︸
p+1

}

V = {0, ..., 0︸ ︷︷ ︸
p+1

, vp+1, ..., vm, 1, ..., 1︸ ︷︷ ︸
p+1

}

Figure 2.15 shows a B-spline surface.

2.6 Distance Measures of Two Curves

As explained in the preface, the distinction of two superimposed B-spline curves
is a substantial goal of the present project. The focus is not on determining dis-
tances in the curve’s position in the plane. It’s rather a question of ascertaining
disparities in the shape of a curve. The ideas of the conceptual model of shape
and measuring a distinction of two curves come from papers of Gerald Farin,
[10], and Remco Veltkamp, [32].

Introductory it is necessary to say, that there is no universal definition of what
shape is. Impressions of a curve’s shape can be conveyed by it’s smoothness,
geometrical form, bend, loops, size, and many more. So, matching of a shape
depends largely on the required features and properties, which we think are
worth investigating for possible distinctions.

A meaningful distinction of shape deals with two indispensable procedures: A
transformation or standardization to move the contours in a comparable posi-
tion and, secondly, measuring the resemblance of a designated property using a
reasonable similarity measure.
At first, we have to find an affine transformation, which minimizes the dis-
similarity or maximizes the similarity of two identical shape formations. As
mentioned above, a reasonable measure depends on the features to examine. If
the unaltered curve progression is decisive, two superimposed curves have the
same shape if they are congruent, i.e. only a combination of a translation and
a rotation
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Figure 2.15: B-spline surface. Picture from http://graph-srv.uni-mb.si/
cgai/eng/surfmod.htm

C(t) 7→ A (C(t) + S) ,

where S is the translation vector and A the rotation matrix, is feasible for a
possible standardization. An efficient translation can be realized by moving
both curves such that the center of gravity or a certain control point lies in
the origin. Rotating the curves until the main axes of inertia with minimum
moment corresponds with the x-axis is a possible choice for a rotation. These
transformations are used in our application, the distinguishing of approximating
B-spline curves, see section 3.3.
If the size of a contour isn’t of importance for a meaningful comparison, we can
additionally enlarge or diminish a curve’s shape by scaling

C(t) 7→ λC(t),

where λ denotes the scaling factor. In this case, two curves have same shape if
there are similar. This permits us the use of further options for advantageous
standardizations. Two curves can be transformed in a way that two control
points coincide. Especially for open curves a transformation equating the end-
points of a curve is a natural and reasonable possibility. At closed curves another

41



variant is to determine the scaling factor in such a way that the areas of the
enclosed parts of the plane get equal. This method was applied to match and
compare ostracode outlines, see section 3.4.

Certainly, the similarity measure has to meet particular requirements as well.
The measure should highlight the designated properties and it is supposed to
be a metric.

Definition 2.6.1. A metric on a set X (of curves) is a (distance) function

d : X ×X → R

complying the following conditions for all A,B,C ∈ X:

1. d (A,B) ≥ 0

2. d (A,B) = 0 ⇐⇒ A = B

3. d (A,B) = d (B,A)

4. d (A,C) ≤ d (A,B) + d (B,C)

This section shows several methods and measures which can be used to distin-
guish B-spline curves. With the exception of the first method, where we want
to find a measure for the difference on the basis of the control polygon of a
B-spline curve, all methods refer to general planar curves, without taking the
construction into consideration.

2.6.1 Distance of Corresponding Control Points

At first sight, the following concept of a distance between two B-spline curves
seems to be quite natural.

Definition 2.6.2. Let C,D be two B-Spline curves with control point sequences
P0, ...,Pn resp. Q0, ...,Qn. We define the distance between C and D as the
square root of the sum of all squared Euclidean distances between the corre-
sponding control points divided by the number of control points

d (C,D) :=
1
n

√√√√
n∑

i=0

‖Pi −Qi‖2.

Defining the difference between two B-spline curves in this way has a number of
coherent reasons. First of all, two superimposed B-spline curves are identical if
their corresponding control points coincide. Property 2.3.5 (Affine invariance)
implies that a translation or rotation is applied to the curve by applying it to
the control points. Both indicates a reasonable measure. A further evidence
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provides the attribute that the control polygon represents a kind of approxima-
tion to the B-spline curve. So, to some extent, the control points describe the
shape of the curve.

A further advantage of distinguishing B-spline curves by using the distance of
the corresponding control points arises from property 2.3.6 (Local support).
A single control point takes effect just on a part of the B-spline curve. By
measuring the Euclidean distance of two corresponding control points we should
be able to determine whether the respective regions differ significant or not.
Moreover, our measure d is of special interest for users from the field of biology
or palaeontology, since it is a tangible, intelligible and easy to visualize tool.
The computing time is extremely short and the approximation of the outline
pixel data generates a unique sequence of control points. Their distances may
have an explanatory power of the difference in the curves shape.

Nevertheless, the computation of the difference of two superimposed B-spline
curves with the measure defined above has some shortcomings, which are dis-
cussed in this section. At first, this distance function doesn’t induce a metric,
since the second condition of a metric (definition 2.6.1) doesn’t hold. This fact
is easy to comprehend by imaging a B-spline curve, whose control points are
located on a straight line. The resulting B-spline curve corresponds with this
line. After moving one or several control points along the line our measurement
d gets positive, but the B-spline curve is still the same line.
Additionally, the measure d only considers the magnitude of the difference vector
between two corresponding points, but not the direction. This difficulty is of
particular importance, if we adjust several control points.
Each point of the curve is determined by at least 3 control points (for degree
≥ 2), see property 2.3.6. Thereby, neighboring control points can be positioned
in such a way that an almost identical curve emerges.

To illustrate the shortcomings, let C (t) =
∑n

i=0 Ni,p (t)Pi be a B-spline curve.
We reposition an arbitrary point Pk and denote the new, translated control
point by P̂k. Thus, we receive a translation vector V = P̂k − Pk and a new
curve given by

Ĉ (t) = N0,p (t)P0 + ... + Nk,p (t) (Pk + V) + ... + Nn,p (t)Pn

= C (t) + Nk,p (t)V.

Consequently,

1. all points of the curve C (t) remain unaffected outside t ∈ [uk, uk+p+1),

2. in the interval t ∈ [uk, uk+p+1) all points shift in direction V.

Figure 2.16 demonstrates the effect.
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Figure 2.16: C(t) (red) and Ĉ(t) (blue) generated by repositioning P2.

By selecting various vectors Vj with the same length ‖Vj‖ = a for all j and
adding them to control point P2, we obtain a B-spline curve Cj (t) for each
vector. Owing to the measure defined above,

d
(
C,Cj

)
=

1
n

√√√√
n∑

i=0

∥∥∥Pi −Pj
i

∥∥∥
2

=
1
5

√∥∥∥P2 −Pj
2

∥∥∥
2

=
a

5

for any vector of length a, although, intuitively speaking, some of the curves
deviate much more from C(t) than others, see figure 2.17.

Figure 2.17: The primal (red) and B-spline curves (blue) generated by adding
various vectors of same length to a control point.

To comprehend the effect of shifting a control point, we examine the following
testing arrangement. Let P0, ...,P4 be control points put on a semicircle of
radius 1 in uniformly distributed angles, that is

P0 = (−1, 0) P1 =
(
− 1√

2
, 1√

2

)
P2 = (0, 1) P3 =

(
1√
2
, 1√

2

)
P4 = (1, 0) .
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Let C(t) be the appropriate B-spline curve of degree 2. We add a vector V
with length 0.2 to the control point P2 and let this vector rotate around P2.
In other words, the new control point P̂2 revolves around P2 at a distance of
0.2. We determine the difference of the curves by using the area deviation,
see subsection 2.6.3. Figure 2.18 displays the area deviation depending on the
direction of the respective vector. The distance of a point of the graph to the
origin is the magnitude of the area deviation in the corresponding direction. As
we can see in figure 2.17, the difference of the two B-spline curves is a minimum,
if P2 is shifted horizontally, and reaches a maximum, if P̂2 is straight above P2.
At this point, I would like to remark again, that the size of the measure d is
equal in each direction.

-0.05 0.05

-0.1

-0.05

0.05

0.1

Figure 2.18: The area deviation in dependence on the direction of V.

The significance of this measure shrinks additionally, if we change two adjacent
control points. For illustration, we use the same experimental assembly again.

Supplementary, we add the vector W =
(√2

10√
2

10

)
to the control point P1 and let

the point P̂2 revolve around P2 as mentioned above. Thus,

d
(
C, Ĉ

)
=

1
n

√√√√
n∑

i=0

∥∥∥Pi − P̂i

∥∥∥
2

=
1
5

√
0.22 + 0.22

=
1
5

√
2

5
=
√

2
25
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for all vectors V. The resulting values of the area deviation are expressed in
figure 2.19.
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Figure 2.19: The area deviation in dependence on the direction V by adding an
additional vector W to P1.

The area deviation between the two B-spline curves takes approximately a min-
imum if V =

(
0.197
−0.035

)
. This situation is shown in figure 2.20. Both B-spline

curves hardly differ, despite an unvarying high distance measure.

2.6.2 Hausdorff Distance

A very natural measure for distinguishing forms and shapes is the Hausdorff
distance, named after Felix Hausdorff. The description of the Hausdorff distance
and its applicability for the measuring of distances in shape come from [12] and
[27].
Hausdorff’s intention was to specify a measure for the distance between two
nonempty subsets A, B of a metric space. He took the minimal number ε, such
that B is contained in the closed ε-neighborhood of A and vice versa.

Definition 2.6.3. Let A, B be nonempty and compact subsets of a finite-dimen-
sional metric space S with distance d. The Hausdorff distance of A and B is
defined by

dH (A,B) := max
{

max
a∈A

min
b∈B

d (a, b) , max
b∈B

min
a∈A

d (a, b)
}

.

Our aim is to measure the similarity of two B-spline curves C (t) resp. D (t).
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Figure 2.20: Two rather similar B-Spline curves generated by varying P1 and
P2.

For this reason we consider the curves C (t) and D (t) as subsets of R2,

A = {C (t) |t ∈ [a1, b1]}
B = {D (t) |t ∈ [a2, b2]}

and let d (a, b) be the Euclidean distance between a and b. Thus,

dH (A,B) := max
{

max
a∈A

min
b∈B

‖a− b‖ ,max
b∈B

min
a∈A

‖a− b‖
}

. (2.22)

Theorem 2.6.4. dH (A,B) is a metric on R2.

Proof: We have to prove the four conditions of a metric:

Proof of 1: ‖a− b‖ is always nonnegative, so dH (A,B) is always nonnegative.

Proof of 2: From A = B follows minb∈B ‖a− b‖ = ‖a− a‖ = 0 and conse-
quently, dH (A, B) = 0. Conversely, if dH (A,B) = 0, both terms of the outer
maximum are equal to zero. Thus, for every a ∈ A, minb∈B ‖a− b‖ = 0 and
hence a ∈ B, what implies A ⊂ B. The reverse inclusion follows in the same
way.

Proof of 3: The maximum operation is symmetric, so dH (A,B) is symmetric.

Proof of 4: For an arbitrary element a ∈ A there must exist an element b ∈ B
with ‖a− b‖ ≤ dH (A,B) and for an arbitrary element b ∈ B there must exist an
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element c ∈ C with ‖b− c‖ ≤ dH (B, C). Adding yields ‖a− c‖ ≤ dH (A,B) +
dH (B, C). Hence, for every a ∈ A exists a c ∈ C with a distance less than
dH (A,B) + dH (B, C). So A is in the (dH (A, B) + dH (B, C))-neighborhood of
C and vice versa because of 3. Thus, dH (A,C) ≤ dH (A,B) + dH (B,C).

But how can we compute this largest of the smallest distances between two
curves now?
Initially we simplify our problem and compute the Hausdorff distance between
a point Q and a curve C (t). From equation (2.22) it is obvious that the point-
curve Hausdorff distance is given by

dH (Q,C) = max
t∈[a,b]

‖Q−C (t)‖ .

An easy computation provides

Lemma 2.6.5. Given the point Q = (qx, qy) and the p-th degree paramet-
ric polynomial curve C (t) = (x (t) , y (t)), t ∈ [a, b]. Let r1, ..., rm the odd-
multiplicity roots of the polynomial

P (t) = (qx − x (t)) · x′ (t) + (qy − y (t)) · y′ (t)

and let r0 = a, rm+1 = b. The Hausdorff distance between the point Q and the
curve C is equal to

dH (Q,C) = max
0≤k≤m+1

‖Q−C (rk)‖ . (2.23)

Proof: Squaring the Euclidean distance ‖Q−C (t)‖2 = (qx − x (t))2+(qy − y (u))2

retains the position of the maximum values. To find them we have to solve
d
dt

(
‖Q−C (t)‖2

)
= 0, that is

2 (qx − x (t)) · x′ (t) + 2 (qy − y (t)) · y′ (t) = 0,

respectively
(Q−C (t)) ·C′ (t) = 0.

This equation also states, that a line from a given point Q to the farthest element
C (t0) of the curve is perpendicular to the tangent line C′ (t0) at C (t0), see figure
2.21.
At the odd multiplicity roots, the function d

dt

(
‖Q−C (t)‖2

)
crosses zero and

the distance function has a local extremum. Finally, one has to examine the
end points of the curve to get equation (2.23).
This leads to a simple approach for computing the Hausdorff distance approxi-
mately by executing the following steps:

1. Compute a sufficiently high number of points on one of the curves with
equidistant parameter values.
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Figure 2.21: The point C (t0) is the farthest point on the curve C(t) for the
point Q.

2. Calculate the point-curve Hausdorff distance of every point to the other
curve using lemma 2.6.5.

3. Determine the maximum.

4. Repeat steps 1-3 for the second curve.

5. The larger of the maximum values yields the desired curve-curve Hausdorff
distance.

By subdividing the B-spline curves by n points each, 2n point-curve Hausdorff
distances have to be computed.

The Hausdorff distance is a commonly used tool in distinguishing and classify-
ing forms and shapes, in recognizing patterns, image comparison and in object
tracking and classification. Also for our application, the distinction of ostra-
code outlines, the Hausdorff distance is certainly an efficient and quite natural
distance measure, since, consequently, the smaller the Hausdorff distance, the
more congruent are the superimposed B-spline curves.
But nevertheless, some difficulties remain in the practical handling. Initially, it
gives no conclusion about differences in the curve’s progression, see figure 2.22.
The circle and the outer square have the same Hausdorff distance to the smaller
square.
Further, the Hausdorff distance is rather susceptible to perturbations. Fig. 2.23
shows two rather similar curves, which differ only on one fragment by a possible
data error. The Hausdorff distance is very large, although both curves mostly
hardly differ.
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dH

Figure 2.22: The smaller square and the circle have the same Hausdorff distance
to the outer square, but they are entirely different curves.

dH

Figure 2.23: Large Hausdorff distance resulting from a possible data error.

2.6.3 Area Deviation

The B-spline curves we use to approximate ostracode outlines feature some
“nice” characteristics. We want to use these characteristics for computing a
demonstrative and tangible measure to distinguish contours. Our approximating
B-spline curves have no loops, self-intersections and other anomalies. We obtain
solely so-called simply-closed curves given by

Definition 2.6.6. A curve C(t), t ∈ [a, b], in the plane is called simply-closed
if it has no self-intersections,

C(t1) 6= C(t2) for t1 6= t2, t1, t2 ∈ [a, b],

and the endpoints coincide,
C(a) = C(b).

The Jordan curve theorem states that every simply-closed curve in the plane
divides the plane into two distinct connected components, where exactly one
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is bounded. Let A be the bounded component of the plane surrounded by a
simply-closed curve C. Accordingly, A can be seen as the interior of C. To
distinguish two simply-closed curves C and D with their interiors A and B, we
consider the area of the part of the plane, which is contained in exactly one of
the domains A and B. This corresponds to the area of the symmetric difference
A4B, which is called the area deviation of A and B.
It is plain to verify that the area deviation is a metric.

Lemma 2.6.7. Let d (A,B) := a (A4B), where a denotes the area in R2.
d (A,B) is a metric.

Proof: We have to prove the 4 conditions listed in definition 2.6.1. The points
1-3 are clearly evident. The triangle inequality is a bit more complicate.

d (A,C) = a (A4 C) = a (A4 ∅4 C)
= a (A4 (B 4B)4 C) = a ((A4B)4 (B 4 C))
≤ a ((A4B) ∪ (B 4 C)) ≤ a (A4B) + a (B 4 C)
= d (A,B) + d (B,C)

To obtain the area deviation of two B-Spline curves it is necessary to compute
the enclosed area between the two graphs, see figure 2.24. The expression “be-
tween” is rather inaccurate in this context and can be misconceived. Actually,
we want to evaluate

d (A,B) = a(A4B) = a (A ∪B)− a (A ∩B) .

Figure 2.24: Area deviation of two superimposed simple-closed B-Spline curves.

After a proper standardization, which is essential for a reasonable determination
of the area deviation, a computation can be done by approximating the curves
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by polygons. We obtain them by computing a large number of points on each
curve corresponding to equally spaced parameter values. Secondly, the points
of intersection of every segment of the first approximating polygon with every
segment of the second approximating polygon have to be determined. These
points of intersection with the intermediate parts of the polygons form new,
usually narrow, closed polygons, which areas are easy to calculate. Adding up
these areas yields the desired number.

The area deviation offers now the advantage that possible data errors do not
have such serious effects as they can occur using the Hausdorff distance. It is
still a very natural measure and, particularly for the use in biological research,
demonstrative and tangible.

Ostracode outlines feature a good characteristic for a fast computation without
difficulties. In general, the approximating polygons are not convex, but the an-
gles between the x-axis and a straight line from the origin to the vertices are in
ascending order. This fact makes it possible to reduce the number of computa-
tions for possible points of intersection substantially. The result of measuring
the differences with the area deviation are in units of square micrometer, what
doubtless contributes to a better conceivability.
A further specification of the implementation can be found in chapter 3.5. The
corresponding program in Mathematica 4.0 is listed in the appendix.

Nevertheless, there is a shortcoming that remains. The area deviation gives
no conclusion about differences in the curve progression. The same value is
attained, if the curves differ substantially at one position or if a rather small
difference exists all over. A potential remedy to this problem presents the next
section.

2.6.4 Curvature Plot

An promising result yields the analytical study of curves with methods of differ-
ential geometry, where we try to find differences of curves on basis of geometri-
cal characteristics of the derivatives. In particular, we are interested in the first
and second derivative, in tangents and in the concept of the curvature of pla-
nar curves. The depiction and the calculation of the curvature of planar curves
was gathered from several textbooks of differential geometry, such as [24], [30]
and [35]. The fundamental idea of using differences in curvature to determine
differences in shape is presented in [10] and [34].
To explain the definition of curvature, we assume that the curve C(t) is twice
continuously differentiable and C′(t) 6= 0 for all t ∈ [a, b]. Initially, we consider
the arc length of a curve C (t), t ∈ [a, b], defined by the definite integral

Lb
a =

∫ b

a

‖C′ (t)‖ dt.
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We assign the arc length of a curve segment C ([a, u]) , u ∈ [a, b] as a new
parameter for the curve. That leads us to a parameter transformation

u 7→ s = s (u) =
∫ u

a

‖C′ (t)‖ dt.

From the fundamental theorem of calculus follows

ds

du
= ‖C′ (u)‖ > 0.

Consequently, s = s (u) has a differentiable inverse function s 7→ u = u (s) with

du

ds
=

1
ds
du |u=u(s)

.

Thus, we can differentiate the curve C with respect to the parameter t as well
as to the parameter s, where Ċ is used to denote the derivative to the arc length
s and C′ to the original parameter t.

Corollary 2.6.8.
∥∥∥Ċ (s)

∥∥∥ = 1

Proof: Let C (t) be a curve with an arbitrary parameter and Ĉ (s) the same
curve using the arc length as parameter. Hence, Ĉ (s) = C (t (s)) = C (t) for
every point of the curve and

∥∥∥∥∥
dĈ (s)

ds

∥∥∥∥∥ =
∥∥∥∥

dC (t (s))
ds

∥∥∥∥ = ‖C′ (t)‖
∣∣∣∣
dt

ds

∣∣∣∣ =
‖C′ (t)‖∣∣ds

dt

∣∣ =

∣∣ds
dt

∣∣
∣∣ds

dt

∣∣ = 1.

In other words, the tangent vector is a unit vector if the arc length is chosen
as parameter. Now suppose a point P on the curve with the corresponding
parameter value s and a second point Q obtained by shifting P an arc length
of ∆s, see figure 2.25.

Since the tangents Ċ (s) and Ċ (s + ∆s) at the points P and Q are unit vectors,
they can be expressed in the form

Ċ (s) = (cos ϑ (s) , sin ϑ (s)) (2.24)
Ċ (s + ∆s) = (cos ϑ (s + ∆s) , sin ϑ (s + ∆s)) ,

where ϑ denotes the angle between the vector and the x-axis in a cartesian
coordinate system.
∆ϑ = |ϑ (s + ∆s)− ϑ (s)| is the angle between the unit tangent vectors. As the
curve is twice continuously differentiable, the limit

κ (s) := lim
∆s→0

ϑ (s + ∆s)− ϑ (s)
∆s

= ϑ̇ (s)
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P

Q

C (s + s)

Figure 2.25: Two points P,Q on a curve and their tangent vectors.

exists. κ (s) is the so-called curvature of the curve in the point C (s).
From (2.24) we obtain

C̈ (s) = (− sinϑ (s) , cosϑ (s))
dϑ

ds
= (− sinϑ (s) , cosϑ (s)) κ.

The vector in parentheses is still a unit vector, hence
∥∥∥C̈

∥∥∥ =
√

C̈ · C̈ = κ.

It is easily verified, that

Ċ× C̈ = κ
(
cos2 (ϑ) + sin2 (ϑ)

)
= κ.

Up to now we merely considered curves using the arc length parameter. How-
ever, it is in our interest to determine the curvature of curves with a general
parameter t. We know that

Ċ = C′ dt

ds
,

C̈ = C′′
(

dt

ds

)2

+ C′ d
2t

ds2

and
dt

ds
=

1
‖C′ (t)‖ =

1
ds
dt

.
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Hence, we can derive

κ = Ċ× C̈

=
x′

‖C′ (t)‖
y′′

‖C′ (t)‖2 +
x′

‖C′ (t)‖y′
(

d2t

ds2

)

− y′

‖C′ (t)‖
x′′

‖C′ (t)‖2 −
y′

‖C′ (t)‖x′
(

d2t

ds2

)

=
x′y′′ − y′x′′

‖C′ (t)‖3

=
C′ ×C′′

‖C′ (t)‖3 .

This is the well-known formula for the curvature of a planar curve C (t) =
(x (t) , y (t)) given in parametric form.

If we plot the curvature versus the parameter of a given curve, we obtain a
very helpful tool for distinguishing shapes. The resulting graph is called the
curvature plot of a curve. Figure 2.26 shows a B-spline curve and its curvature
plot.
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Figure 2.26a: A cubic B-Spline
curve ...
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Figure 2.26b: ... and its curvature
plot.

Now, two curves can be distinguished by comparing their respective curvature
progression. Plotting the square of the distances between the curvature already
provides a good possibility to visualize distinctions. An example using the B-
spline curves of figure 2.26 and a slightly modified curve is illustrated in figure
2.27.

These distances in the curvature progression are well-qualified for further anal-
ysis. One possibility is to consider

∫ 1

0

(κ1 (t)− κ2 (t))2 dt,
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where κ1 (t) and κ2 (t) denote the curvature of two B-spline curves with param-
eter t ∈ [0, 1]. Both curves should be equally parameterized to avoid undesired
distortions, because two identical curves with different parametrization would
be evaluated as different. It is reasonable to use the arc length as parameter for
both curves. Afterwards, statistical methods, as average, median, variance, can
be useful to investigate differences.

The comparison of planar curves by the curvature plot has some remarkable
advantages. Curves can be distinguished locally as we can see in figure 2.27.
A standardization is not required. The curvature is invariant with respect to
affine transformations, what decreases computing time.
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Figure 2.27a: Two varying cubic B-spline curves ...
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Figure 2.27b: ... and their squared differences in curvature.
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Chapter 3

Implementation of the
Formal Methods to
Ostracode Outlines

An executable algorithm for the approximation and distinction of B-spline
curves was first developed in 2002 by Stefanie Bayer, Wolfgang Brauneis and
Ulrike Trischitz as part of an academic project on the University of Salzburg
under the leadership of Johann Linhart. Several essential parts of the presented
implementation, including the conditioning of the raw data (section 3.2), the
approximation of the contour data and the adjustment of the parameter values
(section 3.4), were adopted from the resulting bachelor thesis [3].

3.1 The Ostracoda

The ostracoda are a subclass of the crustacea. The word ostracode is derived
from the Greek word ostrakon which describes a shell. Ostracodes are small
animals with an adult length ranging from 0.3 and 30 mm with the majority
of freshwater species lying between 0.5 and 2.5 mm. It is an extremely ancient
group with a fossil record stretching back to the Cambrian. Ostracodes are one
of the most diverse groups of living crustaceans. At present, approximately 8000
living species have been described. The number of living and fossil ostracode
species is estimated to be 33000.
They occur in practically every aquatic environment, so in today’s oceans they
are found living from the abyssal depths to the shoreline. Moreover, they in-
habit estuaries, lagoons, freshwater lakes, ponds and streams, salt lakes, hot
springs, damp vegetation and even water that collects in leaf bases. Ostracodes
may be free-swimming for all part of their life-cycle, or, more commonly, are
living among aquatic plants or crawling on or through the sediment. They dis-
play a variety of feeding habits; some are filter-feeders, others are scavengers,

57



detritivores, herbivores or predaceous carnivores. A few species are parasitic or
commensal on other crustaceans, worms and echinoderms.
The most distinctive feature of the ostracoda is the calcareous bivalved cara-
pace which can totally envelop the body and limbs, but from which various
appendages are protruded for locomotion, feeding and reproduction. This shell
or carapace has numerous morphological characters, so they leave behind a fos-
sil record rich in information about the characteristics of the environments they
inhabited, leading back up to early Paleozoic time.
(Description taken from [1], [11], and [14])

Figure 3.1: The carapace of an ostracode.

3.2 Data Structure

A photograph of an ostracode valve is taken under a microscope. Afterwards,
the so-called tps-digger [26], a program for specifying morphological structures,
saves the outline in a data set. This program creates a file with the pairs of
coordinates of the outlining pixels of the picture. Also other information, as
potential landmarks and the file name of the picture, is saved in this file. The
illustration below schematically shows the structure of such a file.
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LM=0

OUTLINES=1

POINTS=1387

630 78

631 79

631 80

632 81

633 82

...

627 74

627 75

628 76

629 77

IMAGE=J001.tif

ID=J001

The file describes an outline with no specified landmarks (LM=0) and one con-
tour (OUTLINES=1) with 1387 pixels (POINTS=1387). A detailed description
of the data preparation can be found in the user manual of the program Mor-
phomatica 1.6 [4].

3.3 Center of Gravity and Axes of Inertia

A standardization of the raw data is essential. The positions of the valve on the
pictures vary widely and the tps-files do not tag any basing points. Furthermore,
from a biological point of view it is desirable to divide the contour into a dorsal
and a ventral region.
A meaningful comparison of two valves should be independent of alignment
and position in the picture. A natural way of standardizing or superimposing
surrounded domains is transforming the data points of the contour in a way
that

• the centroid is in the origin and

• the axis with the minimum moment of inertia is identical to the x-axis.

The structure of the tps-data suggests to compute the centroid and the axes of
inertia on the basis of the points, concretely

S =
1
n

n∑

i=0

Pi (3.1)
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yields the center of gravity and

Tg =
n∑

i=0

r2
i

the moment of inertia of a cluster of points regarding to an axis g, where ri

denotes the distance of the i-th point to g.
This modality is reasonable if the points are distributed rather uniformly. Su-
perimposing of two valves, the outlines of which are fringed and seem uneven,
can cause problems. Thereby the centroid shifts naturally towards the fringed
part, because there will be relatively more points concentrated in this region.
Figure 3.3a illustrates this difficulty.

A better standardization is attained if we replace the centroid by the center of
gravity of the domain A surrounded by the given outline. Let P be the simple
closed planar polygon given by the points P1, ...,Pn with Pi = (xi, yi) of the
tps-data. We assume that these points, seen as vertices of the polygon, are
arranged clockwise. Reversing the orientation merely leads to an opposite sign
of the area.
At first, we compute the area a of the domain A. We conceive A being segmented
into trapezoids as shown in the figure below.

i+1

P
i

P

x
i

x
i+1

Figure 3.2: The domain A surrounded by the red polygon is segmented into
trapezoids.
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It follows

a =
∫

A

1 dx dy =
n∑

i=0

∫ xi+1

xi




∫ yi+
yi+1−yi
xi+1−xi

(x−xi)

0

1 dy


 dx

=
n∑

i=0

∫ xi+1

xi

yi +
yi+1 − yi

xi+1 − xi
(x− xi) dx

=
n∑

i=0

yi (xi+1 − xi) +
yi+1 − yi

xi+1 − xi

(
x2

i+1 − x2
i

2
− xi (xi+1 − xi)

)

=
n∑

i=0

(xi+1 − xi)
(

yi +
yi+1 − yi

xi+1 − xi

(
xi+1 + xi

2
− xi

))

=
n∑

i=0

(xi+1 − xi)
(

yi +
yi+1 − yi

xi+1 − xi

xi+1 − xi

2

)

=
n∑

i=0

(xi+1 − xi)
(

yi +
yi+1 − yi

2

)

=
1
2

n∑

i=0

(xi+1 − xi) (yi+1 + yi)

where (xn+1, yn+1) = (x0, y0). The center of gravity is defined by

S = (sx, sy) =
1
a

∫

A

(x, y) dx dy,

similar to equation (3.1), describing the computation of the centroid. Figuring
out yields for the y-coordinate

sy =
1
a

∫

A

y dx dy =
1
a

n∑

i=0

∫ xi+1

xi




∫ yi+
yi+1−yi
xi+1−xi

(x−xi)

0

y dy


 dx

=
1
2a

n∑

i=0

∫ xi+1

xi

(
yi +

yi+1 − yi

xi+1 − xi
(x− xi)

)2

dx

=
1
2a

n∑

i=0

xi+1 − xi

yi+1 − yi

∫ yi+1

yi

t2 dt

=
1
6a

n∑

i=0

xi+1 − xi

yi+1 − yi

(
y3

i+1 − y3
i

)

=
1
6a

n∑

i=0

(xi+1 − xi)
(
y2

i+1 + yiyi+1 + y2
i

)
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and, in an almost analoguous way, for the x-coordinate

sx =
1
a

∫

A

x dx dy =
1
a

n∑

i=0

∫ yi+1

yi

(∫ 0

xi+
xi+1−xi
yi+1−yi

(y−yi)

x dx

)
dy

= ... = − 1
6a

n∑

i=0

(yi+1 − yi)
(
x2

i+1 + xixi+1 + x2
i

)
.

To specify the main axes of inertia we consider initially the moment of inertia
relating to the x-axis. This is given by

T =
∫

A

y2dx dy,

or evaluated in a similar way as above,

T =
1
12

n∑

i=0

(xi+1 − xi)
(
y3

i + y2
i yi+1 + yiy

2
i+1 + y3

i+1

)
,

where (xn+1, yn+1) = (x0, y0). Now let g be an arbitrary straight line passing
through the center of gravity, which is lying in the origin, with the normalized
vector U = (ux, uy) indicating its direction. With it, V = (vx, vy) = (−uy, ux)
is a normal vector to g. The coordinates (x′i, y

′
i) of a point Pi in the coordinate

system described by the vectors U,V are determined by

x′i = Pi ·U = xiux + yiuy

y′i = Pi ·V = −xiuy + yiux (3.2)

and the moment of inertia with respect to the axis g is

T (ux, uy) =
1
12

n∑

i=0

(
x′i+1 − x′i

) (
y′3i + y′2i y′i+1 + y′iy

′2
i+1 + y′3i+1

)
.

Substituting x′i and y′i by the coordinates given in equation (3.2) yields

T (ux, uy) =
1
12

(
a11u

2
x + 2a12uxuy + a22u

2
y

)
= UT AU

with

a11 =
n∑

i=0

(
y3

i−1 + y2
i−1yi + yi−1y

2
i − y2

i yi+1 − yiy
2
i+1 − y3

i+1

)
xi

a12 = a21 =
n∑

i=0

(
−1

2
y2

i−1 − yi−1yi + yiyi+1 +
1
2
y2

i+1

)
x2

i +
(
y2

i+1 − y2
i

)
xixi+1

a22 =
n∑

i=0

(−x3
i−1 − x2

i−1xi − xi−1x
2
i + x2

i xi+1 + xix
2
i+1 + x3

i+1

)
yi.
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The calculation is long-winded and laborious. Therefore we omit the proof.
As we can see, the moment of inertia is a quadratic form UT AU with the matrix

A =
1
12

(
a11 a12

a21 a22

)
.

Let λ1 and λ2 be the eigenvalues and E1,E2 the corresponding unit eigenvectors
of the matrix A. Since A is symmetric, these eigenvectors are orthogonal. With-
out loss of generality, let λ1 ≥ λ2 and an arbitrary vector U = ux E1 + uyE2

be represented by the eigenvectors with ‖U‖ = 1.

T (U) = (uxE1 + uyE2)
T

A (uxE1 + uyE2)

= (uxE1 + uyE2)
T (uxλ1E1 + uyλ2E2)

= λ1u
2
x E1 ·E1︸ ︷︷ ︸

=1

+(λ1 + λ2)uxuy E1 ·E2︸ ︷︷ ︸
=0

+λ2u
2
y E2 ·E2︸ ︷︷ ︸

=1

= λ1u
2
x + λ2u

2
y ≤ λ1u

2
x + λ1u

2
y

= λ1

(
u2

x + u2
y

)
= λ1.

Analogously T (U) ≥ λ2, and, as a consequence, for all unit vectors U the
corresponding moment of inertia complies

λ2 ≤ T (U) ≤ λ1

and

T (E1) = ET
1 AE1 = λ1ET

1 E1 = λ1

T (E2) = ET
2 AE2 = λ2ET

2 E2 = λ2.

Thus the eigenvectors of the matrix A specify the directions of the main axis of
inertia. The axis with the minor eigenvalue conforms with the minimal moment
of inertia.

The alteration is worth seeing. Figure 3.3a shows an ostracode outline standard-
ized by using the outline points. Figure 3.3b is the same outline standardized
by using the exemplified method.

At this point it is necessary to mention that the standardization is infeasible, if
the eigenvalues are almost identical, emerging, e.g., in circles. At this, the main
axes of inertia are undefined or at least ill-conditioned. Usually, this special case
doesn’t occur at ostracode outlines.

Finally we have to define a congruence transformation f , which moves the points
of the contour as mentioned above. Shifting Y = (0, 0) to the point S and
rotating the vectors

(
1
0

)
and

(
0
1

)
to E1 =

(
e11
e12

)
resp. E2 =

(
e21
e22

)
can be done by

a transformation

g (Y) =
(

e11 e21

e12 e22

)
Y + S.
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Figure 3.3a: Centroid and main axes
computed with the outline points.

Figure 3.3b: The origin now is the cen-
ter of gravity of the domain and the
axes correspond with the main axes of
inertia.

Since
(

e11 e21

e12 e22

)
is orthogonal the inverse transformation is

g−1 (X) = f (X) =
(

e11 e12

e21 e22

)
(X− S) .

Applying this transformation to each point moves the contour to the desired
position.

3.4 Approximation to Contour Data

To prepare the point data for a good and meaningful approximation, it is nec-
essary to divide the contour in two halves. If the B-spline approximation is
applied in a straightforward way to an outline, it may happen that two very
similar outlines lead to rather different control points. This is the case for in-
stance with the two artificial elliptic outlines of figure 3.4. One should note that
this phenomenon is due to the fact that moving the control points simultane-
ously in a suitable way around the curve has only little influence on the shape
of the curve.
To avoid this problem, we cut the outline in two pieces and approximate each
half separately under the condition that the resulting curves fit together.
After the standardization this can easily be done by using the x-axis as dividing
line. Concretely, all points Pi = (xi, yi) with xi ≥ 0 will be assigned to the
dorsal region and all points with xi < 0 to the ventral region. Therefore we
must assume that the contour crosses the x-axis at most at two points, what is
usually the case for ostracode outlines, see figure 3.5. Hence there are only two
pairs of consecutive points in the contour where xi ≥ 0 and xi+1 < 0. We pass
a line through these points, determine the intersection points with the x-axis
and add them to the contour. These intersections will be the starting and end
points of the approximating B-spline curves.
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Figure 3.4: Two rather similar elliptic outlines with different control points.

The outlining points of the respective region get numbered consecutively clock-
wise and are approximated by an open uniform non-rational B-spline curve of
degree p = 2 with chord length parameterization. The procedure is explained
in section 2.4.2. Figure 3.6 plots the contour data of an ostracode with its
approximating B-Spline curve.

However, this approximation scheme does not bring an optimum result. A better
solution can be achieved if the vector C (ti)−Qi, ti indicating the corresponding
chord length parameter of Qi, is perpendicular to the curve. Therefore we alter
the parameter ti iteratively by adding a value λi until C (ti) − Qi is roughly
perpendicular to the tangent C′ (ti) .
Initially we consider the Taylor series of the curve at the point C (ti),

C (ti + λi) = C (ti) + λiC′ (ti) +
λ2

i

2!
C′′ (ti) + ...

Thus
C (ti + λi) ≈ X := C (ti) + λiC′ (ti)

if we abort the expansion after the linear term. We want to assign λi, so that
X−Qi is normal to the tangent, that is

(X−Qi) ·C′ (ti) = 0
(C (ti) + λiC′ (ti)−Qi) ·C′ (ti) = 0

C (ti) ·C′ (ti) + λiC′2 (ti)−Qi ·C′ (ti) = 0
λiC′2 (ti) = Qi ·C′ (ti)−C (ti) ·C′ (ti)

λi ‖C′ (ti)‖2 = (Qi −C (ti)) ·C′ (ti)

λi =
(Qi −C (ti)) ·C′ (ti)

‖C′ (ti)‖2
.
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Figure 3.5: Ostracode contour after standardization

Adding λi to ti yields the new parameter t′i. Now we set up a new system of
equations (see section 2.4.2) for computing a new set of control points. If the
result is not satisfying, the procedure can be repeated until the value λi drops
under a specified bound. The method is graphically illustrated for two iterative
steps in figure 3.7 (from [3]).

The comparison in figure 3.8 shows the desired result. After 6 iterations the
approximating B-spline curve approaches the contour data in an observable
better way.

To compare biological aspects of ostracoda it is sometimes useful to adjust
the sizes of the standardized outlines. This is essential for comparing, e.g.,
ostracodes of different age.
Transforming the control points of the B-spline curve in such a way that the
end points P0 = (x0, 0) ,Pn = (xn, 0), lying on the x-axis, get the coordinates
P0 = (−1, 0) ,Pn = (1, 0) is one possibility. This can be done by a homothetic
transformation

s (X) = αX + B

with B = (b, 0). The unknowns α and b have to be specified so that they satisfy
the conditions

s (P0) = (−1, 0) and s (Pn) = (1, 0) .

This leads us to the equations

αx0 + b = −1
αxn + b = 1,

which can easily be solved.
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Figure 3.6: Ostracode contour approximated by a second degree B-spline curve
and its control polygon.

The presented method has one slight shortcoming. The center of gravity shifts
out of the origin, what can cause difficulties if the contour is rather anomalous
or pear-shaped.
We obtain a better solution if we use a transformation

s (X) =
√

aX,

where a is the ratio of the areas a1, a2 enclosed by the B-spline curves,

a =
a1

a2
.

The area of the surrounded domain can be computed with the help of a substi-
tuting polygon for each B-spline curve, generated by equally spaced parameter
values. The sum

a =

∣∣∣∣∣
1
2

m∑

i=0

det [Qi,Qi+1]

∣∣∣∣∣ , (3.3)

Qi, i = 0, ..., m denoting the vertices of the polygon, yields an approximate value
a for the area.
This method keeps the center of gravity in the origin and guarantees a better
comparability.
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Figure 3.7a: Before adjust-
ing the parameter.

Figure 3.7b: After adjusting the
parameter.

Figure 3.7c: Before the 2nd itera-
tive step.

Figure 3.7d: After the 2nd iterative
step.

3.5 Computation of the Area Deviation

The standardization of the contour data, explained in the sections above, per-
mits us to calculate a reasonable measure to distinguish two outlines with the
help of the area deviation of section 2.6.3.
Every specimen is approximated by two open B-spline curves describing two
regions, a dorsal and a ventral one, fixed by the main axes of inertia with the
minimum moment. To calculate an approximative value for the enclosed area
“between” the B-spline curves of two specimen-halves, in the present imple-
mentation 51 points on each curve, corresponding to equally spaced parameter
values, are computed. We denote them with Ci for the first curve and Dj for
the second (i, j = 0, ..., 51). This yields a polygon with 50 line segments sub-
stituting each B-spline curve, with Si =

−−−−−→
CiCi+1 denoting the segments of the

first polygon and Tj =
−−−−−→
DjDj+1 denoting the segments of the second.

To evaluate the area deviation, the points of intersection of the two super-
imposed polygons are of importance. In principle, it would be necessary to
determine the points of intersection of each segment of the first polygon with
each segment of the second polygon, what requires 50× 50 = 2500 comparisons
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Figure 3.8a: Before adjusting the
parameter.
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Figure 3.8b: After 6 iterative steps
a better approach is guaranteed.

for each specimen-half. This goes beyond the scope of a tolerable computing
time.

To accelerate the process, the cotangent cot (ϕ) = x
y is assigned to every vertex

Ci resp. Dj . For this purpose, let ϕi be the angle between the x-axis and
the vector

−−→
OCi, pointing from the origin to the vertex Ci, and ψj be the angle

between the x-axis and the vector
−−−→
ODj . If the cotangent values are in ascending

order, this means
cot (ϕi) < cot (ϕi+1)

and
cot (ψj) < cot (ψj+1) ,

we can confidently assume that points of intersection on a segment Si can only
be possible for segments Tj where

cot (ψj+1) > cot (ϕi)

and
cot (ψj) < cot (ϕi+1) ,

see figure 3.9.
Usually, a segment of a polygon has to be compared with 2 or 3 segments of the
other polygon. This makes it possible to reduce the number of comparisons to
about 150 as opposed to 2500 mentioned above.
To compute the points of intersection the equations

A1x + B1y + C1 = 0 A2x + B2y + C2 = 0

of the lines passing through the points Ci = (xi, yi) and Ci+1 = (xi+1, yi+1)
resp. Dj =

(
x′j , y

′
j

)
and Dj+1 =

(
x′j+1, y

′
j+1

)
have to be established for all i, j.

This can easily be done by using the formulas

A1 = yi − yi+1 A2 = y′j − y′j+1

B1 = xi+1 − xi B2 = x′j+1 − x′j
C1 = yi+1xi − yixi+1 C2 = y′j+1x

′
j − y′jx

′
j+1.
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Figure 3.9: For possible points of intersection of the segment Si only the seg-
ments Tj and Tj+1 of the other polygon are worth considering.

The point of intersection PI = (xI , yI) is given by

xI =
B1C2 −B2C1

A1B2 −A2B1

yI =
C1A2 − C2A1

A1B2 −A2B1

with the following exceptions:

• the denominator A1B2 − A2B1 = 0, but B1C2 − B2C1 6= 0 or C1A2 −
C2A1 6= 0. In this case, the lines are parallel and do not have any point
in common.

• If A1B2 − A2B1 = 0, B1C2 − B2C1 = 0 and C1A2 − C2A1 = 0, the lines
are identical. We define a common vertex as point of intersection.

Certainly, we have to check if the point of intersection PI lies on the segments−−−−−→
CiCi+1 and

−−−−−→
DjDj+1. This is the case if xI ∈ [xi, xi+1] and yI ∈ [yi, yi+1].

Furthermore, a closed polygon is generated with the computed point of intersec-
tion and the parts of both approximating polygons of the B-spline curves down
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to the preceding point of intersection, and its area is determined by using equa-
tion 3.3. The first resp. last polygon starts/ends with the segment [C0,D0] or
[C51,D51] on the x-axis, which are the end control points of the B-spline curves.
Adding up those areas yields the desired number.

The distinction of ostracodes using the area deviation is implemented in the
current version of the program Morphomatica, [20]. The program additionally
offers the possibility to distinguish the valves by examining only the dorsal resp.
ventral region.
The user manual of Morphomatica [4], available at http://www.oeaw.ac.at/
limno/download.htm, contains a well-elaborated example demonstrating the re-
liability of this method of distinction. In example 5 a comparison of the area
deviation with the distance measured using the corresponding control points is
provided and the enhancement is shown with MDS-plots (see chapter 4).

Recent studies verifying morphological characteristics employed already the
present distance measure. Minati et al. [22] commits to the morphological
variability among European populations of vestalenula cylindrica and Iepure et
al. [16] deals with evolutionary and taxonomic aspects of genera in Romania,
both using the area deviation detecting differences in the ostracode’s outlines.
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Chapter 4

Discrimination between
Two Populations using a
Multi-Dimensional-Scale
Plot

Multi-dimensional scaling (MDS) is a method that represents measurements of
similarity (or dissimilarity) among pairs of objects as distances between points
in a low-dimensional space. Applications of MDS include scientific visualisation
and data mining in fields such as cognitive science, information science, psychol-
ogy, biology, marketing and ecology. The objects may be test items, ratings,
trade indices or biometric characteristics. The graphical display of the corre-
lations provided by a MDS representation enables a data analyst to literally
“look” at the data and to explore their structure visually. This often shows
regularities that remain hidden when studying arrays of numbers.
In our application the data are the differences among ostracode outlines mea-
sured by using the area deviation (see chapter 2.6.3 and 3.5). The MDS repre-
sentation is a plane that shows the specimens as points that are closer together
the less the contours are distinguishable.
The description of the construction of a MDS representation refers mainly to
[5] and [6].

In practice, an MDS representation is found by using an appropriate computer
program. In biological research the software package Primer, current version
6.1.6 [25], is a well-established and commonly used tool to investigate morpho-
logical structures. This software includes an efficient subroutine constructing
MDS-plots which generated all MDS-plots shown in this chapter.
A computer program is, however, like a black box. It yields a result, hopefully
a good one, but does not reveal how it finds this solution.
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The following example is a good way to build an intuitive understanding of the
underlying fundamental concept of MDS. The table below shows the air-line
distances between the nine regional capitals of Austria in kilometers.

nr. 1 2 3 4 5 6 7 8 9
1 Bregenz –
2 Eisenstadt 509 –
3 Graz 433 119 –
4 Innsbruck 127 391 307 –
5 Klagenfurt 360 215 99 233 –
6 Linz 350 174 161 245 187 –
7 Salzburg 250 260 198 137 163 108 –
8 St. Pölten 446 78 127 333 202 99 197 –
9 Wien 500 41 144 386 234 154 251 55 –

Table 4.1: Air-line distances of the regional capitals of Austria.

Such tables are well-known, since they can be found in nearly every road map,
although the distances in maps usually reflect the distances on roads.

We now try to reverse the measurement process. That is, based only on the
values in the table above, we want to find a configuration of nine points such
that the distances between these points correspond to the distances between
the nine capital cities on an original map. The reconstructed “map” should
be proportional in size to the original map, which means that the ratios of its
distances should correspond to the ratios of the values in the table. This defines
the task of MDS.

We can find a solution of this task as follows:

To begin with, we first identify those cities that are farthest from each other.
In principle, it is possible to start with any pair of cities. Choosing the farthest
guarantees a convenient overall size of the reconstructed map.
Our table shows that this happens between Bregenz (1) and Eisenstadt (2).
We draw a line segment with a length of λ · 509, where λ denotes a scaling
factor determined by the size of the screen or the piece of paper, and identify
the endpoints by 1 and 2 (see figure 4.1a). Next we elaborate our two-point
configuration by picking one of the remaining cities for the next point. Assume
that we pick Salzburg (7). From the table we know that Salzburg must lie
anywhere on the circle with radius λ ·250 around point 1, representing Bregenz,
and, consequently, it must also lie on the circle with radius λ · 260 around point
2, representing Eisenstadt. Hence, for a new point 7, representing Salzburg in
the new map, there are exactly two solutions - labeled as 7 and 7’, respectively.
Figure 4.1b illustrates this fact. We arbitrarily choose point 7.
We continue by adding further points to our MDS configuration. It does not
matter which city we pick next. Assume that is Klagenfurt. A possible point 5
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representing this town should lie on the circle around point 1 with radius λ ·360,
on the circle around point 2 with radius λ · 215 and on the circle around point 7
with radius λ · 163, as shown in figure 4.1c. Point 5 satisfies all three conditions
and, in contrast to the above construction for point 7, there is only one solution
point.
Once all of the cities have been considered, the configuration in figure 4.1d
is obtained. The configuration solves the representation problem, since the
distances between its points correspond to the distances in the table, except for
an overall scaling factor λ.

1

2
d12

Figure 4.1a: First construction step
for a MDS representation.

1

2

7

7’

d17 d72

Figure 4.1b: Positioning point 7 on
the map.

1

2

5

7

d15

d75

d25

Figure 4.1c: Positioning point 5 on
the map.

1

2

3

4

5

67 8 9

Figure 4.1d: Final MDS representa-
tion for the data of table 4.1.

Finally, we can adjust the plot with certain “cosmetic” transformations helping
to make the MDS representation easier to look at. Rotations and reflections are
obviously without consequence for our reconstruction problem, because they
leave the distances invariant. Also admissible is a scaling of the entire configu-
ration, since enlargements or reductions do not affect the ratios of the distances.

In general we don’t reconstruct maps in scientific use. The data contained in
the distance or dissimilarity matrix arise from miscellaneous measurements of
the resemblance such as differences of natural numbers occurring in test scores
or election results, growth differences, differences in age, etc., and not merely
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from measuring length or distance. This leads to the fact that normally a unique
reconstruction, as shown in the introductory example above, is not feasible since
the data do not represent distances in a plane. Established programs handle
this problem by positioning the points representing an object randomly into
the plane and shifting those points on the basis of the distance values in the
resemblance matrix iterative as long as a certain number of iteration steps is
attained or the error drops under a threshold. Customarily, the goodness-of-fit
is measured by calculating the stress value, defined by

Stress =

∑n
j=1

∑n
k=j+1

(
djk − d̂jk

)2

∑n
j=1

∑n
k=j+1 djk

2
,

where djk is the measured distance between the items j and k and d̂jk represents
the Euclidean distance in the MDS representation, see [7]. If djk = d̂jk for all
the n (n− 1) /2 distances in this summation, the stress is obviously zero. But
large differences clearly lead to a large stress value and this can be thought
of as measuring the difficulty to compress the sample relationships into two
dimensions. Clarke and Warwick predict in their approach to statistical analysis
[7] that a stress value smaller than 0.1 corresponds to a good ordination with
no real prospect of a misleading interpretation.
Generally, it is possible to determine a best-approximating solution of the clas-
sical scaling problem. A detailed description of the theory and a construction
scheme can be found in [21].

For our task, the classification of ostracodes, the entries in the resemblance
matrix are the pairwise differences computed with the area deviation described
in chapter 2.6.3 and 3.5. Table 4.2 shows a resemblance matrix comparing the
valves of respectively 8 specimens of the species Pseudocandona danubialis from
Ada-Kaleh (figure 4.2) and Pseudocandona eremita from Aştileu (figure 4.3),
both localities in Romania. The data and pictures originate from a comparative
study of Iepure et al., [16], investigating the morphology of valves belonging to
populations from Romania.

Figure 4.4 shows the resulting MDS-plot created by Primer 6.1.6 [25].

Dissimilarity measurement

A simple but effective measurement that is tangible and easy to visualize for
the discrimination of two populations of ostracodes represents the ratio of the
distance of the respective mean specimens dMean, determined by the centroid
of the corresponding items in the MDS-plot, and the maximum distance of
two specimens of each population, denoted by dMax. Figure 4.5 shows the
MDS representation of the populations from Ada-Kaleh and Aştileu of figure
4.4 complemented with the mean specimens of each population. Additionally,
the distance of the respective mean specimens dMean and the maximum distance
dMax is charted.
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Figure 4.2: Lateral view of female valves belonging to the species Pseudocan-
dona danubialis from Ada-Kaleh.

Figure 4.3: Lateral view of female valves belonging to the species Pseudocan-
dona eremita from Aştileu.

The ratio of those distances (Distances in MDS-plot-Index) can easily be com-
puted by

DMI (Pop1, Pop2) :=
dMean

dMax
.

For our present example characterizing the distinction of Ada-Kaleh and Aştileu
this index yields

DMI (AK,Ast) = 0.63 .

The value decreases at species with lower disparities. Figure 4.7 shows a MDS
representation of respectively 8 specimens of the species Pseudocandona eremita
from Aştileu and from Hotarele (figure 4.6) with their mean specimens and the
mean and maximum distance.
It is obvious that the items representing the population of Aştileu resp. from
Hotarele are jumbled and a clear classification is hardly feasible. It is worth
mentioning that even a human expert eye isn’t capable to assign the contours
of a species without doubt. Hence, the distance of the mean specimens dMean

is small, while the maximum distance dMax is rather similar in length as in the
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Figure 4.4: MDS representation of dissimilarities between valves of the Ada-
Kaleh and Aştileu populations.

former example. As expected, the ratio between those distances is merely

DMI (Ast,Hot) = 0.25 .

Intuitively, a DMI greater than 0.5 indicates a good disjunction of the popula-
tions. Thereby, dMean > 1

2 · dMax. Assuming that the points in the MDS-plot
representing one population are approximately normal distributed, we can con-
sequently expect that the point clouds lie separated in the plane. In practice, a
good disjunction of the populations occurs at a DMI > 0.6.

However, it is necessary to refer to one disadvantage of the demonstrated mea-
sure. Whereas dMean as distance between the mean specimen is relatively ro-
bust, the distance dMax is highly sensitive to statistical outliers and perturba-
tions. An outstanding specimen within one population can enlarge dMax so that
the DMI being the ratio of dMax and dMean strongly diminishes although the
populations would still be distinguishable.

The following measure of the dissimilarity between two populations is more
insensitive to possible outliers:

Let P = {p1, ..., pn} and Q = {q1, ..., qm} two populations and d a metric defined

78



Figure 4.5: Maximum distance dMax and distance of the mean specimens dMean

in the MDS-plot representing dissimilarities of Ada-Kaleh and Aştileu popula-
tions.

on P ∪Q. The dissimilarity between P and Q can be defined by

diss(P, Q) :=
1

nms (P,Q)
1

n2 s (P ) + 1
m2 s (Q)

,

where

s (P,Q) :=
n∑

i=1

m∑

k=1

d (pi, qk)

and

s (P ) :=
n−1∑

i=1

n∑

k=i+1

d (pi, pk) , s (Q) :=
m−1∑

i=1

m∑

k=i+1

d (qi, qk) .

Some essential properties of this measure are:

1. diss (P, Q) only depends on the distances d (x, y) with x, y ∈ P ∪Q.

2. diss (P, Q) is invariant to scaling transformation.

3. diss (P, Q) = 1 if P = Q.

4. If the underlying metric d is the area deviation, diss(P,Q) is always ≥ 1.
This follows from the fact that the area deviation is a so-called hypermetric
[17].
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Figure 4.6: Lateral view of female valves belonging to the species Pseudocan-
dona eremita from Hotarele.

This measure depends no longer on the rather sensitive maximum distance be-
tween two populations and is therefore more stable. In addition, diss (P, Q) can
directly be computed using the distance matrix. A representation in the plane
is no longer required.
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Figure 4.7: Maximum distance dMax and distance of the mean specimens dMean

in the MDS-plot representing dissimilarities of Aştileu and Hotarele populations.
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Appendix A

Program in Mathematica
4.0

The present Mathematica-program evaluates a pairwise comparison by using the
area deviation of all specimen listed in a given subdirectory. After reading in
the tps-data, every outline is approximated by a second degree B-spline curve as
mentioned in chapter 3. Then, the area deviation is accomplished and displayed
in a table. The module for loading the tps-datasets, parts of the approximation
algorithm and the routines for the graphical representation were adopted from
[3].
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