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Having the x,y coordinates we can easily plot the outline but

isthat enough for comparing different outlines? ” “
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s Shape is all geometrical information
- that remains when location, scale
and rotational effects are filtered
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Superimpositionmight seem a reasonable option for comparing the outlines,
but the right solution is not so straightforward ...

Rotation, translation or scaling do not make two shapes different.
Shape is invariant to those transformations.

So, in order to do comparisons, we should
%9020000000999%%%% first normalized our outlines for
TRANSLATIONS,ROTATIONSand SIZE



Normalizing for TRANSLATIONS is easy!
Centre all the outlines on their centroid
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Given an outline which is described by k-points in m-dimensions, centroid

size is defined as the square root of the sum of squared Euclidean
distances from each landmark to the centroid
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2) Normalizing for SIZE. That's easy too! Re-scale all the
outlines according some measure of size (e.g. total length,
outline areq, centroid size, ..)
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3) Normalizing for ORTENTATION

That's a little more complicated but not too much!

All we need is a kind of base-line recognizable in all specimens so that we can
orientate the outline accordingly. That reference line might be the one

connecting two landmarks in the organisms or some geometrically derived
feature (e.g. the major axis of the ellipse fitting the outline)
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Now, it's clear that all the original outlines have indeed the same shape
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lliptic Fourier Analysis
Fourier analysis is a mathematical way of reducing complex R 4
curves into their component spatial frequencies ao(Sf;gi:gg%;
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Almost any curve (zoutline) can be analyzed in this way
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Number of Harmonics

The overall shape of most non-marine ostracods can be properly
described with just 10-20 harmonics (=40-80 coefficients)

Fourier COEFFICIENTS
A B, [} D,

specimenl 0732 0.0451 0.569 0.321

specimen2  0.265 0.231 0.633 0597

specimen3  0.368 0.789 0.012 0.469

mto s\‘mderd numerical analysis
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EFA is an information preserving technique
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Each of the basic frequencies in which a complex curve is decomposed
is called a harmonic. The more complex the outline is the higher the
number of harmonics we need to adequately describe it.

[higher order harmonics - higher frequencies - finer details]

80 harmonics
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Polar coordinates

R(0) : radiusvector

0 : polar anglefrom arbitfrary
reference line

i:har icorder

¢, : amplitudeof i - th harmonic

0 : phase angle

R(O)=R + ici cos(if - 0,)

(1) the form of an individual's outline is described in terms of phi-star
(9*) function measured at n ponts;

(2) columns in the dataset containing the values
of ¢* associated with a single individual are
standardize to unit variance;

(3) the matrix of covariances
among the standardized ¢* shape
functions is decomposed to its
eigenvectors:

The first eigenshape
summarizes the general or shared
shape; subsequent eigenshapes
represent contrasts in shape.

Seasonal variation of Cyprideis margarita
Shapemeasured
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MORPHOSPACE I

lAnaIysis of Morphological Disparifyl

Morphological disparity within the Cypridoidea

Morphological disparity: the overall morphological variety within a
taxon regardless of the rank of that taxen

from Sanchez-Gonzalezet al
(2004)

TheCypridoidean morphospace
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9 e . Family Limnocythereinopinata
J N) 7 5 ) Candonidae (978 items from 11 different sites)
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Eucyprisvirens- Ontogenetic stages
(Eigenshape analysis on EFA derived outlines)
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Eigenshapeanalysis on EFA derived outlines
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